particularly via asymmetric catalysis.5 In this paper, we
would like to report the first enantio- and diastereoselective
Zn-ene-allene cyclization, via asymmetric catalysis, in
which several carbon-carbon bonds including the challeng-
ing tertiary alcohol stereocenter were created in a single-pot
operation. The intramolecular addition of propargyl/alle-
nylzinc compounds to alkenes and alkynes, called zinc-
ene-allene6 and zinc-yne-allene7 carbocyclization, re-
spectively, leading to the unique formation of carbocycles
in excellent yields as unique diastereoisomers was described
from our research group and was successfully used for the
stereoselective syntheses of polysubstituted tetrahydrofurans8
and pyrrolidines9 as well as for an efficient approach to
angular and linear triquinane skeletons.10
on a model acysilane was reported in the literature,12 and it
has been shown that an enantioenriched silyl alkynol could
be treated with a catalytic amount of n-BuLi to generate
chiral allenyl silylether with minimal erosion of stereochem-
ical information. However, the Brook rearrangement pro-
ceeds only when a catalytic amount of base is utilized, and
the typically rapid and essentially irreversible reaction is by
protonation of the carbanion by the starting alcohol.13
Therefore, transfer of chirality into a metallated allenyl
species through a stoichiometric amount of base for the
Brook rearrangement14 had no precedent, and that drove our
curiosity. We first prepared enantioenriched propargyl silanol
using a tridentate Schiff base ligand 3a as reported by
Scheidt,12a and our results are described in Table 1. We were
This initial approach was further improved when it was
found that a tandem Zn-promoted Brook rearrangement-
carbocyclization reaction also leads to the cyclic product in
similar yields and diastereoselectivities (Scheme 1).11 How-
Table 1. Enantioselective Addition of Alkynes 1a-c to
Acylsilanes 2a-d
Scheme 1. Tandem Zn-Promoted Brook Rearrangement/
Ene-Allene Carbocyclization Reaction
entry
R1
R2
R3
ligand yielda (%)
erb
1
2
3
4
5
6
7
Ph (1a)
Ph (1a)
Ph (1a)
Ph (1a)
Ph (1a)
Hex (1b)
Ph Me (2a)
Ph Ph (2b)
Me t-Bu (2c)
Me Me (2d)
Ph Me (2a)
Ph Me (2a)
3a
3a
3a
3a
3b
3a
3a
94 (4a)
78 (4b)
55 (4c)
96 (4d)
93 (4a)
80 (4e)
87 (4f)
86:14
88:12
53:47
76:24
90:10
84:16
67:33
SiMe3 (1c) Ph Me (2a)
a Isolated yields after column chromatography on silica gel. b Enantiomeric
ratio determined by HPLC on chiral column. c Absolute configuration
determined by comparison of experimentally measured and calculated CD.15
ever,tohaveanenantio-anddiastereoselectiveZn-ene-allene
carbocyclization reaction, we have to address the challenging
in situ preparation and cyclization of enantiomerically
enriched allenylzinc species. The asymmetric alkyne addition
pleased to see that the addition of phenyl acetylene 1a
(R1 ) Ph) to acylsilane 2a (R2 ) Ph, R3 ) Me) proceeds
smoothly to give the expected propargyl silanol 4a in
excellent yield and in fair enantiomeric ratio (94%, er 86:
14, see Table 1, entry 1). Although the same behavior was
found with acylsilane 2b (R2 ) R3 ) Ph, er 88:12, entry 2,
(5) Li chemistry: (a) Majumdar, S.; de Meijere, A.; Marek, I. Synlett
2002, 423. (b) Norsikian, S.; Marek, I.; Klein, S.; Poisson, J. F.; Normant,
J. F. Chem.sEur. J. 1999, 5, 2055. (c) Norsikian, S.; Marek, I.; Poisson,
J. F.; Normant, J. F. J. Org. Chem. 1997, 117, 8853. (d) Klein, S.; Marek,
I.; Poisson, J. F.; Normant, J. F. J. Am. Chem. Soc. 1995, 117, 8853. Zn
chemistry: (e) Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437.
(f) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122,
978. Zr chemistry: (g) Liang, B.; Novak, T.; Tan, Z.; Negishi, E. J. Am.
Chem. Soc. 2006, 128, 2770, and references cited therein. (h) Wipf, P.;
Ribe, S. Org. Lett. 2002, 4, 395. (i) Heron, N. M.; Adams, J. A.; Hoveyda,
A. M. J. Am. Chem. Soc. 1997, 119, 6205.
(12) (a) Reynolds, T. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem.
Soc. 2006, 128, 15382. (b) Nicewicz, D. A.; Johnson, J. S. J. Am. Chem.
Soc. 2005, 127, 6170.
(13) For representative examples, see: (a) Reich, H. J.; Eisenhart, E. K.;
Olson, R. E.; Kelly, M. J. J. Am. Chem. Soc. 1986, 108, 7791. (b) Reich,
H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609.
(14) For recent reports on the Brook rearrangements, see: (a) Smith,
A. B., III.; Kim, W.-S.; Wuest, W. M. Angew. Chem., Int. Ed. 2008, 47,
7082. (b) Smith, A. B., III.; Kim, D. S. J. Org. Chem. 2006, 71, 2547. (c)
Smith, A. B., III.; Kim, D. S. Org. Lett. 2005, 7, 3247. (d) Smith, A. B.,
III.; Kim, D. S. Org. Lett. 2004, 6, 1493. (e) Reynolds, T. E.; Stern, C. A.;
Scheidt, K. A. Org. Lett. 2007, 9, 2581. (f) Tsubouchi, A.; Onishi, K.;
Takeda, T. J. Am. Chem. Soc. 2006, 128, 14268. (g) Linghu, X.; Potnick,
J. R.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070. (h) Nicewicz,
D. A.; Yates, C. M.; Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 2652.
(i) Linghu, X.; Johnson, J. S. Angew. Chem., Int. Ed. 2003, 42, 2534. (j)
Linghu, X.; Nicewicz, D. A.; Johnson, J. S. Org. Lett. 2002, 4, 2957.
(6) Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J. F. J. Org.
Chem. 1995, 60, 863.
(7) Meyer, C.; Marek, I.; Normant, J. F.; Platzer, N. Tetrahedron Lett.
1994, 35, 5645.
(8) (a) Lorthiois, E.; Marek, I.; Meyer, C.; Normant, J. F. Tetrahedron
Lett. 1995, 36, 1263. (b) Lorthiois, E.; Marek, I.; Normant, J. F. Bull. Chem.
Soc. Fr. 1997, 134, 5317.
(9) Lorthiois, E.; Marek, I.; Normant, J. F. Tetrahedron Lett. 1997, 38,
89.
(10) Meyer, C.; Marek, I.; Normant, J. F. Tetrahedron Lett. 1996, 37,
857.
(11) (a) Unger, R.; Cohen, T.; Marek, I. Org. Lett. 2005, 7, 5313. (b)
Unger, R.; Cohen, T.; Marek, I. Eur. J. Org. Chem. 2009, 0000.
1854
Org. Lett., Vol. 11, No. 8, 2009