H-4), 3.99 (dddd, 1H, 3JH-F 16.4, J 7.4, 3.7, 1.3, H-5b), 3.97-3.94
(m, 1H, H-4a), 3.94-3.82 (m, 3H, H-4b, H-5, H-5), 2.29-1.51 (m,
12H, H-2 and H-3); dC (100 MHz, D2O) 98.6, 97.8, 95.8, 90.9,
10 (a) N. K. Vyas, M. N. Vyas, M. C. Chervenak, D. R. Bundle, B. M.
Pinto and F. A. Quiocho, Proc. Natl. Acad. Sci. U. S. A., 2003, 100,
15023–15028; (b) F. A. Quiocho, Biochem. Soc. Trans., 1993, 21, 442–
448.
11 (a) G. Blanco, E. P. Patallo, A. F. Brana, A. Trefzer, A. Bechthold, J.
Rohr, C. Mendez and J. A. Salas, Chem. Biol., 2001, 8, 253–263; (b) M.
Perez, F. Lombo, L. L. Zhu, M. Gibson, A. F. Brana, R. Rohr, J. A.
Salas and C. Mendez, Chem. Commun., 2005, 1604–1606; (c) B. Ostash,
U. Rix, L. L. R. Rix, T. Liu, F. Lombo, A. Luzhetskyy, O. Gromyko,
C. C. Wang, A. F. Brana, C. Mendez, J. A. Salas, V. Fedorenko and
J. Rohr, Chem. Biol., 2004, 11, 547–555; (d) F. Lombo, M. Gibson, L.
Greenwell, A. F. Brana, J. Rohr, J. A. Salas and C. Mendez, Chem.
Biol., 2004, 11, 1709–1718.
1
1
1
85.0 (d, JC-F 164.6), 84.9 (d, JC-F 166.2), 84.5 (d, JC-F 164.6),
83.9 (d, 1JC-F 164.6), 79.9 (d, 3JC-F 8.0), 77.7 (d, 3JC-F 8.0), 76.6 (d,
2
2
2
2JC-F 19.2), 72.8 (d, JC-F 17.6), 71.7 (d, JC-F 19.2), 69.3 (d, JC-F
19.2), 63.8 (d, 3JC-F 8.0), 62.9 (d, 3JC-F 8.0), 33.3, 32.5, 28.6, 26.3,
2
25.2, 24.6, 23.8, 23.4; dF (376 MHz, D2O) -229.8 (td, JF-H 47.8,
3JF-H 20.2), -229.9 (td, JF-H 46.0, JF-H 16.5), -230.48 (td, JF-H
2
3
2
47.8, 3JF-H 18.4), -231.5 (td, 2JF-H 46.0, 3JF-H 22.1); HRMS (ES+):
168.1031 [M + NH4 ]; calc. for C6H15FNO3 168.1030; m/z (ES-)
+
12 H. Kodama, Y. Kajihara, T. Endo and H. Hashimoto, Tetrahedron
Lett., 1993, 34, 6419–6422.
13 C. L. Schengrund and P. Kovac, Carbohydr. Res., 1999, 319, 24–28.
14 J. A. K. Howard, V. J. Hoy, D. Ohagan and G. T. Smith, Tetrahedron,
1996, 52, 12613–12622.
149 (100%, M - H+), 129 (21).
Acknowledgements
15 (a) J. A. Olsen, D. W. Banner, P. Seiler, B. Wagner, T. Tschopp, U.
Obst-Sander, M. Kansy, K. Muller and F. Diederich, Chembiochem,
2004, 5, 666–675; (b) J. A. Olsen, D. W. Banner, P. Seiler, U. O. Sander,
A. D’Arcy, M. Stihle, K. Muller and F. Diederich, Angew. Chem.-Int.
Edit., 2003, 42, 2507–2511; (c) J. Olsen, P. Seiler, B. Wagner, H. Fischer,
T. Tschopp, U. Obst-Sander, D. W. Banner, M. Kansy, K. Muller and
F. Diederich, Org. Biomol. Chem., 2004, 2, 1339–1352; (d) K. Mu¨ller,
C. Faeh and F. Diederich, Science, 2007, 317, 1881–1886.
16 (a) R. A. Field and J. H. Naismith, Biochemistry, 2003, 42, 7637–7647;
(b) C. Dong, L. L. Major, V. Srikannathasan, J. C. Errey, M. F. Giraud,
J. S. Lam, M. Graninger, P. Messner, M. R. McNeil, R. A. Field, C.
Whitfield and J. H. Naismith, J. Mol. Biol., 2007, 365, 146–159; (c) M.
Tello, P. Jakimowicz, J. C. Errey, C. L. F. Meyers, C. T. Walsh, M. J.
Buttner, D. M. Lawson and R. A. Field, Chem. Commun., 2006, 1079–
1081; (d) E. L. Westman, D. J. McNally, M. Rejzek, W. L. Miller, V. S.
Kannathasan, A. Preston, D. J. Maskell, R. A. Field, J. R. Brisson and
J. S. Lam, Biochem. J., 2007, 405, 123–130; (e) J. D. King, N. J. Harmer,
A. Preston, C. M. Palmer, M. Rejzek, R. A. Field, T. L. Blundell and
D. J. Maskell, J. Mol. Biol., 2007, 374, 749–763.
17 M. Tello, M. Rejzek, B. Wilkinson, D. M. Lawson and R. A. Field,
Chembiochem, 2008, 9, 1295–1302.
18 (a) M. Yang, M. R. Proctor, D. N. Bolam, J. C. Errey, R. A. Field,
H. J. Gilbert and B. G. Davis, J. Am. Chem. Soc., 2005, 127, 9336–
9337; (b) A. E. Sismey-Ragatz, D. E. Green, N. J. Otto, M. Rejzek,
R. A. Field and P. L. DeAngelis, J. Biol. Chem., 2007, 282, 28321–
28327.
19 For major contributions from other groups, see: (a) R. R. Griffith and
J. S. Thorson, Nature Chemical Biology, 2006, 2, 659–660; (b) G. J.
Williams, C. Zhang and J. S. Thorson, Nature Chemical Biology, 2007,
3, 657–662; (c) K. S. Ko, C. J. Zea and N. L. Pohl, J. Am. Chem. Soc.,
2004, 126, 13188–13189; (d) K. S. Ko, C. J. Zea and N. L. Pohl, J. Org.
Chem., 2005, 70, 1919–1921.
This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC, GR/S82053/02, fellowships to AC,
GR), the University of Leicester (studentship to RR), and the
University of Strathclyde Principal’s Fund (fellowship to GR).
We also thank the EPSRC’s National Mass Spectrometry Service
Centre, University of Wales Swansea for mass spectrometric
measurements and Dr Martin Rejzek for assistance with chro-
matography.
References and notes
1 S. L. Cobb, H. Deng, J. T. G. Hamilton, R. P. McGlinchey, D. O’Hagan
and C. Schaffrath, Bioorganic Chemistry, 2005, 33, 393–401.
2 S. L. Cobb, H. Deng, J. T. G. Hamilton, R. P. McGlinchey and D.
O’Hagan, Chem. Commun., 2004, 592–593.
3 D. O’Hagan and D. B. Harper, J. Fluorine Chem., 1999, 100, 127–133.
4 S. E. Wohlert, G. Blanco, F. Lombo, E. Fernandez, A. F. Brana, S.
Reich, G. Udvarnoki, C. Mendez, H. Decker, J. Frevert, J. A. Salas and
J. Rohr, J. Am. Chem. Soc., 1998, 120, 10596–10601.
5 A. Freitag, C. Mendez, J. A. Salas, B. Kammerer, S. M. Li and L. Heide,
Metabolic Engineering, 2006, 8, 653–661.
6 G. Sianidis, S. E. Wohlert, C. Pozidis, S. Karamanou, A. Luzhetskyy,
A. Vente and A. Economou, J Biotechnol., 2006, 125, 425–433.
7 B. Ma, J. L. Simala-Grant and D. E. Taylor, Glycobiology, 2006, 16,
158R–184R.
8 (a) M. D. Burkart, S. P. Vincent, A. Duffels, B. W. Murray, S. V. Ley and
C. H. Wong, Bioorg. Med. Chem., 2000, 8, 1937–1946; (b) B. Cobucci-
Ponzano, A. Trincone, A. Giordano, M. Rossi and M. Moracci, J. Biol.
Chem., 2003, 278, 14622–14631; (c) C. A. Tarling, S. M. He, G.
Sulzenbacher, C. Bignon, Y. Bourne, B. Henrissat and S. G. Withers,
J. Biol. Chem., 2003, 278, 47394–47399; (d) O. Berteau, J. Bielicki, A.
Kilonda, D. Machy, D. S. Anson and L. Kenne, Biochemistry, 2004,
43, 7881–7891; (e) M. C. Galan, A. P. Venot, R. S. Phillips and G. J.
Boons, Org. Biomol. Chem., 2004, 2, 1376–1380; (f) A. J. Norris, J. P.
Whitelegge, M. J. Strouse, K. F. Faull and T. Toyokuni, Bioorg. Med.
Chem. Lett., 2004, 14, 571–573; (g) G. Sulzenbacher, C. Bignon, T.
Nishimura, C. A. Tarling, S. G. Withers, B. Henrissat and Y. Bourne,
J. Biol. Chem., 2004, 279, 13119–13128; (h) R. Daniellou and C. Le
Narvor, Adv. Synth. Catal., 2005, 347, 1863–1868; (i) E. P. Mitchell,
C. Sabin, L. Snajdrova, M. Pokorna, S. Perret, C. Gautier, C. Hofr,
N. Gilboa-Garber, J. Koca, M. Wimmerova and A. Imberty, Proteins-
Structure Function and Bioinformatics, 2005, 58, 735–746; (j) M. Izumi,
S. Kaneko, H. Yuasa and H. Hashimoto, Org. Biomol. Chem., 2006,
4, 681–690; (k) D. C. Turnock, L. Izquierdo and M. A. J. Ferguson,
J. Biol. Chem., 2007, 282, 28853–28863.
9 (a) E. C. Stanca-Kaposta, D. P. Gamblin, J. Screen, B. Liu, L. C. Snoek,
B. G. Davis and J. P. Simons, Phys. Chem. Chem. Phys., 2007, 9, 4444–
4451; (b) J. Screen, E. C. Stanca-Kaposta, D. P. Gamblin, B. Liu, N. A.
Macleod, L. C. Snoek, B. G. Davis and J. P. Simons, Angew. Chem.-Int.
Edit., 2007, 46, 3644–3648; (c) S. E. Kiehna, Z. R. Laughrey and M. L.
Waters, Chem. Commun., 2007, 4026–4028; (d) L. Bautista-Ibanez, K.
Ramirez-Gualito, B. Quiroz-Garcia, A. Rojas-Aguilar and G. Cuevas,
J. Org. Chem., 2008, 73, 849–857.
20 J. C. Errey, B. Mukhopadhyay, K. P. R. Kartha and R. A. Field, Chem.
Commun., 2004, 2706–2707.
21 A. Kirschning, M. Jesberger and K. U. Schoning, Synthesis, 2001, 507–
540.
22 S. G. Withers, D. J. Maclennan and I. P. Street, Carbohydr. Res., 1986,
154, 127–144.
23 For reviews, see: (a) R. P. Singh and J. M. Shreeve, Synthesis, 2002,
2561–2578; (b) K. Dax, M. Albert, J. Ortner and B. J. Paul, Carbohydr.
Res., 2000, 327, 47–86; (c) K. Dax, Sci. Synth., 2006, 34, 71–148.
24 For a recent example, see: D. Crich and O. Vinogradova, J. Am. Chem.
Soc., 2007, 129, 11756–11765.
25 J. Fuentes, M. Angulo and M. A. Pradera, Carbohydr. Res., 1999, 319,
192–198.
26 J. Nieschalk and D. O’Hagan, J. Fluorine Chem., 1998, 91, 159–163.
27 P. J. Card and G. S. Reddy, J. Org. Chem., 1983, 48, 4734–4743. While
a direct fluorination of an unprotected methyl glucopyranoside was
achieved with DAST, the method was less successful with other sugars
and was dependent on the anomer used for the transformation.
28 For other approaches to the de novo synthesis of unusual monosac-
charides, see: (a) A. Armstrong, D. M. Gethin and C. J. Wheelhouse,
Synlett, 2004, 350–352; (b) L. R. Cox, G. A. DeBoos, J. J. Fullbrook,
J. M. Percy, N. S. Spencer and M. Tolley, Org. Lett., 2003, 5, 337–339;
(c) L. R. Cox, G. A. DeBoos, J. J. Fullbrook, J. M. Percy and N. Spencer,
Tetrahedron-Asymm., 2005, 16, 347–359; (d) A. J. Boydell, V. Vinader
and B. Linclau, Angew. Chem.-Int. Edit., 2004, 43, 5677–5679; (e) C.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 996–1008 | 1007
©