Scheme 1. Catalytic Acylation of 1-Arylpyrazoles
Scheme 2. Ruthenium-Catalyzed Ortho Acylation of 1-Phenyl-
pyrazole
mechanism involving chelation-assisted cyclometalation
and oxidative addition of the acyl chloride rather than
σ-activation by ruthenium and electrophilic attack.
The optimized conditions for the catalytic ortho CÀH
acylation of 1-phenylpyrazole 1 employed 5 mol % of
[RuCl2(p-cymene)]2 in the presence of 10 mol % of PCy3
and 5 equiv of K2CO3.9 The reaction of 1-phenylpyrazole
with a range of acyl chlorides afforded ortho acylated
products in moderate-to-good yields (Scheme 2). In gen-
eral, acylation of 1-phenylpyrazole with aryl acid chlorides
gives both mono- and diacylated products that are difficult
to purify and isolated yields that are low (4aÀ8a). How-
ever, reproducible experiments indicated that the more
sterically hindered o-toluoyl chloride was more effective in
the ortho acylation of 1-phenylpyrazole than benzoyl
chloride.
We were pleased to discover that alkyl acid chlorides
were converted to the corresponding products 9aÀ19a
in predominantly respectable yields with recovery of un-
reacted 1-phenylpyrazole. Notably, the reaction proceeded
with acetyl chloride to afford 9a; although a modest
yield (28%) was obtained, this is the first example of 9a
being prepared via catalytic CÀH functionalization and it
provides evidence that the reaction proceeds through
established.7 More recently, the Ru(II)-catalyzed functio-
nalization of meta sites by remote para activation has
also been demonstrated for sulfonations and alkylations
(including 1-phenylpyrazole).8
Interestingly, with acyl chlorides (e.g., o-toluoyl chloride 2)
only the product from ortho CÀH functionalization is
observed under a broad range of conditions with no trace
of the meta product (Scheme 2). This is consistent with a
(3) Cu-catalyzed CÀH functionalization: (a) Zhang, L.; Liu, Z.; Li,
H.; Fang, G.; Barry, B.-D.; Belay, T. A.; Bi, X.; Liu, Q. Org. Lett. 2011,
13, 6536–6539. (b) Jin, J.; Wen, Q.; Lu, P.; Wang, Y. Chem. Commun.
2012, 48, 9933–9935. Pd-catalyzed CÀH functionalization: (c) Dick,
A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300–
2301. (d) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S.
Tetrahedron 2006, 62, 11483–11498. (e) Chen, X.; Goodhue, C. E.; Yu,
J.-Q. J. Am. Chem. Soc. 2006, 128, 12634–12635. (f) Liu, Y.-K.; Lou,
S.-J.; Xu, D.-Q.; Xu, Z.-Y. Chem.;Eur. J. 2010, 16, 13590–13593. (g)
Lou, S.-J.; Xu, D.-Q.; Xia, A.-B.; Wang, Y.-F.; Liu, Y.-K.; Du, X.-H.;
Xu, Z.-Y. Chem. Commun. 2013, 49, 6218–6220. Rh-catalyzed CÀH
functionalization: (h) Miyamura, S.; Tsurugi, H.; Satoh, T.; Miura, M.
J. Organomet. Chem. 2008, 693, 2438–2442. (i) Umeda, N.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7094–7099. (j) Umeda, N.;
Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. J. Org. Chem.
2011, 76, 13–24. (k) Li, X.; Yu, S.; Wang, F.; Wan, B.; Yu, X. Angew.
Chem., Int. Ed. 2013, 52, 2577–2580. (l) Huang, L.; Wang, Q.; Qi, J.; Wu,
X.; Huang, K.; Jiang, H. Chem. Sci. 2013, 4, 2665–2669. (m) Pan, F.; Lei,
Z.-Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z.-J. Angew. Chem., Int. Ed. 2013,
52, 2063–2067. Ru-catalyzed CÀH functionalization: (n) Kakiuchi, F.;
Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem.
Lett. 2002, 396–397. (o) Ackermann, L.; Althammer, A.; Born, R.
Synlett 2007, 18, 2833–2836. (p) Ackermann, L.; Vicente, R.; Althammer,
A. Org. Lett. 2008, 10, 2299–2302. (q) Ackermann, L.; Mulzer, M. Org.
(5) (a) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am.
Chem. Soc. 1996, 118, 493–494. (b) Asaumi, T.; Chatani, N.; Matsuo, T.;
Kakiuchi, F.; Murai, S. J. Org. Chem. 2003, 68, 7538–7540. (c) Asaumi,
T.; Matsuo, T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org.
Chem. 2004, 69, 4433–4440. (d) Imoto, S.; Uemura, T.; Kakiuchi, F.;
Chatani, N. Synlett 2007, 1, 170–172.
(6) Selected recent reviews on Ru(II)-catalyzed CÀH bond functio-
nalization: (a) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744–
5767. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879–5918. (c) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010,
292, 211–229.
(7) (a) Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.;
Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792–2793. (b) Kochi, T.;
Tazawa, A.; Honda, K.; Kakiuchi, F. Chem. Lett. 2011, 40, 1018–1020.
(8) For recent ruthenium-catalyzed CÀH bond functionalizations of
meta sites: (a) Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.;
ꢀ
Lett. 2008, 10, 5043–5045. (r) Ackermann, L.; Novak, P.; Vicente, R.;
Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045–6048. (s)
ꢀ
Ackermann, L.; Novak, P.; Vicente, R.; Pirovano, V.; Potukuchi,
H. K. Synthesis 2010, 13, 2245–2253. (t) Luo, N.; Yu, Z. Chem.;Eur.
J. 2010, 16, 787–791. (u) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.;
Dixneuf, P. H. Green Chem. 2011, 13, 3075–3078. (v) Li, W.; Arockiam,
P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011,
13, 2315–2319. (w) Hashimoto, Y.; Ueyama, T.; Fukutani, T.; Hirano,
K.; Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 1165–1166. (x)
Ackermann, L.; Kozhushkov, S. I.; Yufit, D. S. Chem.;Eur. J. 2012, 18,
12068–12077. (y) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.;
Miura, M. Org. Lett. 2012, 14, 2058–2061. (z) Hashimoto, Y.; Hirano, K.;
Satoh, T.; Kakiuchi, F.; Miura, M. J. Org. Chem. 2013, 78, 638–646.
(4) (a) Kost, A. N. I.; Grandberg, I. Adv. Heterocycl. Chem. 1966, 6,
347–429. (b) Finar, I. L.; Foster, T. J. Chem. Soc. 1967, 1494–1497.
€
Mahon, M. F.; Kociok-Kohn, G.; Whittlesey, M. K.; Frost, C. G. J. Am.
Chem. Soc. 2011, 133, 19298–19301. (b) Hofmann, N.; Ackermann, L.
ꢀ
ꢀ
J. Am. Chem. Soc. 2013, 135, 5877–5884. (c) Julia-Hernandez, F.;
Simonetti, M.; Larrosa, I. Angew. Chem., Int. Ed. 2013, 52, 11458–11460.
(9) See Supporting Information for details.
Org. Lett., Vol. 15, No. 22, 2013
5863