ACS Catalysis
Letter
(3) For selected recent reviews of transition-metal-catalyzed cross-
coupling reactions, see: (a) Jana, R.; Pathak, T. P.; Sigman, M. S.
Chem. Rev. 2011, 111, 1417−1492. (b) Kambe, N.; Iwasaki, T.; Terao,
J. Chem. Soc. Rev. 2011, 40, 4937−4947. (c) Johansson Seechurn, C. C.
C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed.
2012, 51, 5062−5085. (d) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270−
5298.
Scheme 4. Effect of the Addition of Exogenous Ligands on
Representative Reactions Catalyzed by Complex 2
(4) For selected examples of Fe-catalyzed cross-coupling of
nonactivated alkyl halides, see: (a) Sherry, B. D.; Furstner, A. Acc.
Chem. Res. 2008, 41, 1500−1511. (b) Hatakeyama, T.; Hashimoto, T.;
Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M.
Angew. Chem., Int. Ed. 2012, 51, 8834−8837. (c) Guisan-Ceinos, M.;
Tato, F.; Bunuel, E.; Calle, P.; Cardenas, D. J. Chem. Sci. 2013, 4,
1098−1104. (d) Cheung, C. W.; Ren, P.; Hu, X. L. Org. Lett. 2014, 16,
2566−2569. (e) Bedford, R. B. Acc. Chem. Res. 2015, 48, 1485−1493.
(5) For selected examples of Co-catalyzed cross-coupling of
nonactivated alkyl halides, see: (a) Ohmiya, H.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886−1889. (b) Shukla, P.;
Hsu, Y.-C.; Cheng, C.-H. J. Org. Chem. 2006, 71, 655−658. (c) Cahiez,
G.; Chaboche, C.; Duplais, C.; Giulliani, A.; Moyeux, A. Adv. Synth.
Catal. 2008, 350, 1484−1488. (d) Hammann, J. M.; Haas, D.;
Knochel, P. Angew. Chem., Int. Ed. 2015, 54, 4478−4481.
(6) For selected recent examples of Ni-catalyzed cross-coupling of
nonactivated alkyl halides, see: (a) Lu, Z.; Fu, G. C. Angew. Chem., Int.
Ed. 2010, 49, 6676−6678. (b) Zultanski, S. L.; Fu, G. C. J. Am. Chem.
Soc. 2013, 135, 624−627. (c) Liang, Y.; Fu, G. C. J. Am. Chem. Soc.
2015, 137, 9523−9526. (d) Liang, Y.; Fu, G. C. Angew. Chem., Int. Ed.
2015, 54, 9047−9051. (e) Terao, J.; Kambe, N. Acc. Chem. Res. 2008,
41, 1545−1554.
(7) For selected examples of Cu-catalyzed cross-coupling of
nonactivated alkyl halides, see: (a) Yang, C.-T.; Zhang, Z.-Q.; Liu,
Y.-C.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 3904−3907. (b) Ren, P.;
Stern, L.-A.; Hu, X. L. Angew. Chem., Int. Ed. 2012, 51, 9110−9113.
(c) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen, H.-
H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 11124−11127.
(8) (a) Vechorkin, O.; Hu, X. L. Angew. Chem., Int. Ed. 2009, 48,
2937−2940. (b) Vechorkin, O.; Proust, V.; Hu, X. L. J. Am. Chem. Soc.
2009, 131, 9756−9766. (c) Perez Garcia, P. M.; Di Franco, T.; Orsino,
A.; Ren, P.; Hu, X. L. Org. Lett. 2012, 14, 4286−4289.
The addition of 5 equiv (relative to 2) of an exogenous
ligand (lutidine, pyridine, or PPh3) to the cross-coupling of the
(3-iodobutyl)benzene decreased significantly the yields. These
results are consistent with the hypothesis that the pyrrolidino
group is “hemilabile” and de-coordinate from the Ni center to
create a more open, and thus, accessible reaction site for
secondary alkyl halides.12,17
In summary, a small modification of the N2N pincer ligand
results in a drastically improved Ni catalyst. The new Ni pincer
complex 2 is efficient for Kumada and Suzuki−Miyaura
coupling of both primary and secondary alkyl halides. Further
structural modifications, for example, replacing the second
dimethyl amino group by a pyrrolidino group and systemati-
cally changing the dimethyl amino groups to 3, 4, 6-membered
cyclic amines, will lead to a structure−activity study that gives
more insights in the key factors controlling the reactivity of
these nickel pincer complexes.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(9) (a) Vechorkin, O.; Barmaz, D.; Proust, V.; Hu, X. L. J. Am. Chem.
Soc. 2009, 131, 12078−12079. (b) Vechorkin, O.; Godinat, A.;
Scopelliti, R.; Hu, X. L. Angew. Chem., Int. Ed. 2011, 50, 11777−11781.
(10) (a) Di Franco, T.; Boutin, N.; Hu, X. L. Synthesis 2013, 45,
2949−2958. (b) Di Franco, T.; Epenoy, A.; Hu, X. L. Org. Lett. 2015,
17, 4910−4913.
S
Experimental details (PDF)
Characterization data (CIF)
(11) Vechorkin, O.; Proust, V.; Hu, X. L. Angew. Chem., Int. Ed. 2010,
49, 3061−3064.
AUTHOR INFORMATION
Corresponding Author
■
(12) Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R.; Hu, X. L.
J. Am. Chem. Soc. 2011, 133, 7084−7095.
(13) For crystallographic details of complex 2, see the Supporting
Information.
Author Contributions
‡These authors contributed equally (P.M.P.G. and T.D.F.).
(14) For practical convenience, catalyst loading was 3.5 mol % for the
Kumada coupling reactions shown in Table 2. However, a catalyst
loading of 1 mol % is sufficient to obtain the cross-coupling products
in the same yields.
Notes
The authors declare no competing financial interest.
(15) Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584−595.
(16) Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. L. Chem. - Eur. J.
2009, 15, 3889−3899.
(17) Perez García, P. M.; Ren, P.; Scopelliti, R.; Hu, X. L. ACS Catal.
2015, 5, 1164−1171.
ACKNOWLEDGMENTS
This work is supported by the Swiss National Science
Foundation (no. 200020_144393/1).
■
REFERENCES
■
(1) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: New York, 2004.
(2) (a) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346,
1525−1532. (b) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 674−688. (c) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed.
́
2009, 48, 2656−2670. (d) Phapale, V. B.; Cardenas, D. J. Chem. Soc.
Rev. 2009, 38, 1598−1607. (e) Hu, X. L. Chem. Sci. 2011, 2, 1867−
1886.
261
ACS Catal. 2016, 6, 258−261