C O M M U N I C A T I O N S
In conclusion, we have identified ruthenium metathesis catalysts
that show improved reactivity profiles for the RCM and where clear
differences exist between the respective conformers of the NHC
ligand. While testing these new catalysts, we discovered that
substantially higher reaction rates could be obtained when more
concentrated substrate/solvent mixtures were employed. This
ultimately led to the RCM forming five- and six-membered rings
of a variety of substrates with catalyst loadings of just 50-250
ppm of anti-3. This simple and practical way for improving the
reactivity and the lifetime of anti-3 seems to be applicable to other
ruthenium metathesis catalysts and should extend their usefulness
in chemical synthesis. The intriguing reactivity differences between
anti-3 and syn-3 are now the subject of a mechanistic study that
will be extended to metathesis reactions using chiral derivatives of
the ligands described here.11
Acknowledgment. We thank the Alfred Werner Foundation
(R.D.), the Swiss National Foundation (R.M.), the Roche Research
Foundation (E.D.), and UZH (M.G., L.V.P., X.L.) for support.
Supporting Information Available: Experimental procedures,
kinetic data, and CIFs for anti-3 and anti-4. This material is available
Figure 2. Substrates (above, catatyst loadings for 5-8, 10-14; 0.1 mol
%, for 15; 0.2 mol %; for 9; 2 mol %), kinetic data for RCM of 7, 9, and
11, and concentration dependence for conversion of 7 with anti-3 (below).
References
(1) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (b) Grubbs,
R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003.
(2) HovII: (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2000, 122, 8168. BleII: (b) Wakamatsu, H.; Blechert,
S. Angew. Chem., Int. Ed. 2002, 41, 2403 GreII: (c) Grela, K.; Harutyunyan,
S.; Michrowska, A. Angew. Chem., Int. Ed. 2002, 41, 4038 LAGII: Bieniek,
M.; Bujok, R.; Cabaj, M.; Lugan, N.; Lavigne, G.; Arlt, D.; Grela, K. J. Am.
Chem. Soc. 2006, 128, 13652.
(3) (a) Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.;
Linden, A.; Dorta, R. J. Am. Chem. Soc. 2008, 130, 6848. (b) Vieille-
Petit, L.; Luan, X.; Mariz, R.; Blumentritt, S.; Linden, A.; Dorta, R. Eur.
J. Inorg. Chem. 2009, 1861. (c) Vieille-Petit, L.; Luan, X.; Gatti, M.;
Blumentritt, S.; Linden, S.; Clavier, H.; Nolan, S. P.; Dorta, R. Chem.
Commun. 2009, 3783.
efficiency as that of the neat reactions. Overall, catalyst loadings
could be significantly lowered compared to the runs performed in
solution. Although not optimized, between 50 and 250 ppm of
precatalyst anti-3 at room temperature suffice for virtually complete
conversion to give ring-closed disubstituted and trisubstituted five-
and six-membered rings. Generation of ethylene gas is not necessary
for the reaction to proceed (entries 13-15). In the case of the
representative enyne substrate 10, a concentrated CH2Cl2 solution
already ensures unprecedented levels of activity (entries 9,10). Also
notable is the very low catalyst loading (0.2 mol %) needed to obtain
the tetrasubstituted olefin from 9 (entry 8). This product is normally
only produced with heating and substantially higher catalyst
loadings. Turnover numbers reaching 20 000 (entries 2,10,12) and
turnover frequencies of 240 000 per hour (entries 1,11,13) for
complete conversion certainly approach values needed for larger-
scale industrial applications of the RCM reaction.10
(4) Similar NHCs with unsymmetrical phenyl side chains are fluxional, see:
Stewart, I. C.; Benitez, D.; O’Leary, D. J.; Tkatchouk, E.; Day, M. W.;
Goddard, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 1931.
(5) Such systems might show differences in catalytic performance and could
serve as ideal models for studying some of the mechanistically relevant
and still disputed steps of metathesis reactions; see: (a) Romero, P. E.;
Piers, W. E. J. Am. Chem. Soc. 2005, 127, 5032. (b) Wenzel, A. G.; Grubbs,
R. H. J. Am. Chem. Soc. 2006, 128, 16048. (c) Romero, P. E.; Piers, W. E.
J. Am. Chem. Soc. 2007, 129, 1698. (d) Van der Eide, E. F.; Romero, P. E.;
Piers, W. E. J. Am. Chem. Soc. 2008, 130, 4485.
(6) See the Supporting Information for details.
Table 1. RCM (25°C) with anti-3 at Low Catalyst Loadings
(7) The results seem counterintuitive given the overall higher steric bulk of
(2,7)-SIPrNap and (2)-SICyNap compared to SIMes (ref 3a).We believe
that this is due to the fact that one of the sides on the naphthyl moieties is
more open than in SIMes and, as a consequence, bulky substrates can
approach the metal center more easily.
entry
olefin
conditions
anti-3 (ppm)
t (min)
yield (%)a
1
5
5
6
6
7
8
8
9
10
10
11
11
12
13
14
15
neat
neat
250
50
1
120
5
12
30
9
18
480
4
30
1
120
1
5
480
480
99 (97)
97
98 (96)
97
98 (97)
99
97
97
99
99
99
2b
3c
(8) To our knowledge, this is the first study relating reactivity to reaction
concentration since productive RCM was introduced. Early studies on
substrates such as 5 with less selective/active Schrock’s and Grubbs’ I
catalysts showed that productive RCM needed dilutions of at least 0.1 M;
see: (a) Forbes, M. D. E.; Patton, J. T.; Myers, T. L.; Maynard, H. D.;
Smith, D. W.; Schulz, G. R.; Wagener, K. B. J. Am. Chem. Soc. 1992,
114, 10978. (b) Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62,
7310. For more recent relevant reports, see: (c) Dinger, M. B.; Mol, J. C.
AdV. Synth. Catal. 2002, 344, 671. (d) Dolman, S. J.; Sattely, E. S.;
Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6991. (e)
Maifeld, S. V.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2004, 126, 12228.
(9) For insightful recent studies on solvent concentration in macrocyclic RCM:
(a) Conrad, J. C.; Eelman, M. D.; Silva, J. A. D.; Monfette, S.; Parnas, H.;
Snelgrove, J. L.; Fogg, D. E. J. Am. Chem. Soc. 2007, 129, 1024. (b) Shu,
C.; Zeng, X.; Hao, M.-H.; Wei, X.; Yee, N. K.; Busacca, C. A.; Han, Z.;
Farina, V.; Senanayake, C. H. Org. Lett. 2008, 10, 1303.
(10) Grela and more recently Grubbs showed that high TONs can be achieved
when heating 5 in toluene with HovII. However, already 7 gives much
poorer results: (a) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K.
Chem.sEur. J. 2008, 14, 806. (b) Kuhn, K. M.; Bourg, J.-P.; Chung, C. K.;
Virgil, S. C.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 5313.
(11) Luan, X.; Mariz, R.; Robert, C.; Gatti, M.; Blumentritt, S.; Linden, A.;
Dorta, R. Org. Lett. 2008, 10, 5569.
0.5 M Hex
0.5 M Hex
neat
0.5 M Hex
0.5 M Hex
0.5 M Hex
0.5 M DCM
0.5 M DCM
neat
neat
neat
0.5 M Hex
neat
neat
250
100
250
250
100
2000
100
50
250
50
250
250
250
250
4c
5
6c
7c
8c
9c
10c
11
12b
13
14c
15
16
98
99
99
96
97
a Yields based on NMR analysis. Selected isolated yields in brackets.
b Runs with GII did not go to completion under these conditions but
showed appreciable amounts of product [after 2 h: 72% (5) and 58%
(11), after 24 h: 87% (5) and 72% (11)](ref 6). c DCM ) CH2Cl2, Hex
) n-hexane.
JA903554V
9
J. AM. CHEM. SOC. VOL. 131, NO. 27, 2009 9499