Brønsted Acid or Solid Acid-Catalyzed aza-Diels–Alder Reactions
Compound 3a: White solid, m.p. 176–177 °C. IR (CH Cl ): ν =
˜
Table 6. Mont. K-10 catalyzed reactions of MCP 1d with (aryl-
imino)acetates 2.
2
2
3397, 3054, 2979, 2899, 1732, 1711, 1595, 1489, 1442, 1365, 1291,
1203, 1123, 1082, 1030, 873, 807, 754, 702 cm–1. 1H NMR
(300 MHz, CDCl3, TMS): δ = 0.45–0.56 (m, 3 H), 1.04–1.07 (m, 1
H), 1.25 (t, J = 6.9 Hz, 3 H, CH3), 4.06–4.12 (m, 2 H), 4.36 (s, 1
H), 4.51 (s, 1 H, NH), 6.55 (d, J = 8.4 Hz, 1 H, Ar), 6.99–7.04 (m,
3 H, Ar), 7.16–7.27 (m, 5 H, Ar), 7.32–7.37 (m, 2 H, Ar), 7.53 (d,
J = 8.4 Hz, 2 H, Ar) ppm. 13C NMR (75 MHz, CDCl3, TMS): δ
= 4.5, 8.9, 14.1, 23.4, 56.0, 58.1, 61.4, 108.1, 117.3, 126.6, 126.77,
126.81, 128.8, 129.7, 130.4, 131.3, 134.6, 141.9, 142.2, 143.0, 145.2,
171.7 ppm. MS (EI): m/z (%) = 463 (43), 462 (13), 461 [M]+ (44),
390 (94), 389 (25), 388 (100), 310 (24), 309 (41), 210 (58), 208 (61).
C26H24BrNO2 (461.10): calcd. C 67.54, H 5.23, N 3.03; found C
67.26, H 5.08, N 2.91.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures and spectroscopic data.
[a] All reactions were carried out with 1d (0.3 mmol) and 2
(0.3 mmol) catalyzed by mont. K-10 (50 mg) in DCE (1 mL) at
room temperature for 3 h. [b] Isolated yields.
Acknowledgments
Financial support from the Shanghai Municipal Committee of Sci-
ence and Technology (06XD14005 and 08dj1400100-2), the
National Basic Research Program of China (973-2009CB825300),
and the National Natural Science Foundation of China (20872162,
20672127, 20732008, 20821002, and 20702013) is greatly acknowl-
edged.
[1] C. W. Bird (Ed.), Comprehensive Heterocyclic Chemistry II, Per-
gamon, Oxford, 1996.
Scheme 2. Conversion of compound 3a.
[2] For a recant review, see: A. R. Katrizky, S. Rachwal, B. Rach-
wal, Tetrahedron 1996, 52, 15031–15070 and references cited
therein.
[3] a) Z. H. Skraup, Ber. Dtsch. Chem. Ges. 1880, 13, 2086–2087;
b) Z. H. Skraup, P. Brunner, Monatsh. Chem. 1881, 2, 139–170;
c) R. H. F. Manske, M. Kulka, Org. React. 1953, 7, 59–98.
[4] P. Friedländer, Ber. Dtsch. Chem. Ges. 1882, 15, 2572–2575.
[5] W. Pfitzinger, J. Prakt. Chem. 1886, 33, 100.
[6] R. C. Elderfield (Ed.), Heterocyclic Compounds, Wiley, New
York, 1952, vol. 4.
[7] a) D. L. Boger, Tetrahedron 1983, 39, 2869–2939; b) T. Kamet-
ani, H. Takeda, Y. Suzuki, T. Honda, Heterocycles 1984, 22,
275–276.
Conclusions
In conclusion, we have disclosed two facile routes for the
formation of the tetrahydroquinoline skeleton with a cy-
clopropyl group in the 3,3Ј-position. As a result of the po-
tential pharmaceutical applications of this tetrahydroquino-
line skeleton containing a highly strained cyclopropyl-ring
substituent, these new compounds may find some useful-
ness in the near future. Biological activity tests are un-
derway in the National Center for Drug Screening.
[8] H. Ishitani, S. Kobayashi, Tetrahedron Lett. 1996, 37, 7357–
7360 and references cited therein.
[9] For some reviews, see: a) F. Brackmann, A. de Meijere, Chem.
Rev. 2007, 107, 4493–4537; b) L. A. Wessjohann, W. Brandt, T.
Thiemann, Chem. Rev. 2003, 103, 1625–1647; c) W. A. Don-
aldson, Tetrahedron 2001, 57, 8589–8627.
[10] For example: J. Barluenga, M. Álvarez-Pérez, K. Wuerth, F.
Rodríguez, F. J. Fañanás, Org. Lett. 2003, 5, 905–908.
[11] For example: a) D. G. Müller, C. E. Schmid, Biol. Chem.
Hoppe-Seyler 1988, 369, 647–653; b) G. Pohnert, W. Bolard,
Tetrahedron 1996, 52, 10073–10082.
[12] For example: a) X.-M. Bao, S. Katz, M. Pollard, J. B. Ohlrogge,
Proc. Natl. Acad. Sci. USA 2002, 99, 7172–7177; b) X.-M. Bao,
J. J. Thelen, G. Bonaventure, J. B. Ohlrogge, J. Biol. Chem.
2003, 278, 12846–12853.
[13] For example: a) M. Kordes, H. Winsel, A. de Meijere, Eur. J.
Org. Chem. 2000, 3235–3245; b) D. Moye-Sherman, S. Jin, S.-
M. Li, M. B. Welch, J. Reibenspies, K. Burgess, Chem. Eur. J.
1999, 5, 2730–2739; c) M. Martín-Vilà, E. Muray, G. P. Agu-
ado, A. Alvarez-Larena, V. Branchadell, C. Minguillón, E. Gir-
alt, R. M. Ortuño, Tetrahedron: Asymmetry 2000, 11, 3569–
3584; d) B. Illescas, J. Rifé, R. M. Ortuño, N. Martín, J. Org.
Chem. 2000, 65, 6246–6248; e) M. W. Nötzel, M. Tamm, T.
Labahn, M. Noltemeyer, M. Es-sayed, A. de Meijere, J. Org.
Chem. 2000, 65, 3850–3852.
Experimental Section
General Procedure for the TfOH-Catalyzed Reactions of MCPs 1
with Ethyl (Arylimino)acetates 2: Under an argon atmosphere, 2a
(76.8 mg, 0.3 mmol), 1a (61.8 mg, 0.3 mmol), TfOH (3 µL,
0.03 mmol, 10 mol-%), and DCE (1.0 mL) were added into a
Schlenk reaction tube. The mixture was stirred at 5 °C for 0.5 h,
then quenched by the addition of solid sodium hydrogen carbonate.
The solvent was removed under reduced pressure, and the residue
was purified by flash column chromatography (SiO2) to give 3a in
82% yield (113 mg).
General Procedure for the Mont. K-10 Catalyzed Reactions of
MCPs 1 with Ethyl (Arylimino)acetates 2: Under an argon atmo-
sphere, 2a (76.8 mg, 0.3 mmol), 1a (61.8 mg, 0.3 mmol), mont. K-
10 (50 mg), and DCE (1.0 mL) were added into a Schlenk reaction
tube. The mixture was stirred at room temperature for 3 h. The
solvent was removed under reduced pressure, and the residue was
purified by flash column chromatography (SiO2) to give 3a in 82%
yield (122 mg).
Eur. J. Org. Chem. 2009, 2576–2580
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2579