3370
P. Jourdain et al. / Tetrahedron Letters 50 (2009) 3366–3370
Although alcohol 2 was obtained as a 1:1 mixture of epimers,
References and notes
both isomers can be used in the next step of the synthesis. Indeed,
the ‘good diastereoisomer’ can be coupled under classical esterifi-
cation conditions while the wrong one could, in principle, be uni-
ted to the bottom half using Mitsunobu’s conditions.
1. (a) Yotsu-Yamashita, M.; Haddock, R. L.; Yasumoto, T. J. Am. Chem. Soc. 1993,
115, 1147; (b) Yotsu-Yamashita, M.; Seki, T.; Paul, V. J.; Naoki, H.; Yasumoto, T.
Tetrahedron Lett. 1995, 36, 5563.
2. (a) Fujiwara, K.; Murai, A.; Yotsu-Yamashita, M.; Yasumoto, T. J. Am. Chem. Soc.
1998, 120, 10770; (b) Paquette, L. A.; Barriault, L.; Pissarnitski, D.; Johnston, J. N.
J. Am. Chem. Soc. 2000, 122, 619; (c) White, J. D.; Blakemore, P. R.; Browder, C.
C.; Hong, J.; Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wadrop, D. J. J. Am.
Chem. Soc. 2001, 123, 8593; (d) Blakemore, P. R.; Browder, C. C.; Hong, J.;
Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J.; White, J. D. J. Org.
Chem. 2005, 70, 5449; (e) Barriault, L.; Boulet, S. L.; Fujiwara, K.; Murai, A.;
Paquette, L. A.; Yotsu-Yamashita, M. Bioorg. Med. Chem. Lett. 1999, 9, 2069.
3. Pérez-Balado, C.; Markó, I. E. Tetrahedron 2006, 62, 2331.
In summary, an efficient synthesis of the Northern fragment 2
of polycavernoside A 1 has been developed using a novel method-
ology based upon the sigmatropic rearrangement of dienyl sulfox-
ides. An unprecedented 1,6-reductive elimination has been
performed selectively in the presence of a 1,2-hydroxysulfone. This
approach gave access to the desired triene 2 with an excellent
overall yield of 60%. These results clearly demonstrate the viability
of our methodology. Efforts are now currently dedicated to broad-
ening the scope of this connective synthesis of polyenes and apply-
ing it as a key step in the assembly of various natural products.
4. Fujiwara, K.; Amano, S.; Murai, A. Chem. Lett. 1995, 855.
5. Dumeunier, R.; Markó, I. E. Tetrahedron Lett. 2000, 41, 10219.
6. (a) Rayner, D. R.; Miller, E. G.; Bickart, P.; Gordon, A. J.; Mislow, K. J. Am. Chem.
Soc. 1966, 88, 3138; (b) Bickart, P.; Carson, F. W.; Jacobus, J.; Miller, E. G.;
Mislow, K. J. Am. Chem. Soc. 1968, 90, 4869.
7. Braverman, S.; Stabinsky, Y. Chem. Commun. 1967, 270.
8. Evans, D. A.; Andrews, G. C.; Sims, C. L. J. Am. Chem. Soc. 1971, 93, 4956.
9. Corey, E. J.; Hoover, D. J. Tetrahedron 1982, 23, 3463.
10. (a) Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186; (b) Epifani, E.;
Florio, S.; Ingrosso, G.; Ronzini, L.; Sgarra, R.; Troisi, L. Tetrahedron 1991, 47,
7489.
11. (a) Kende, A. S.; Mendoza, J. S. Tetrahedron Lett. 1990, 31, 7105; (b) Markó, I. E.;
Murphy, F.; Dolan, S. Tetrahedron Lett. 1996, 37, 2089.
12. Tomohumi, S.; Kousaburo, O.; Takeshi, O. Synthesis 1999, 1141.
13. Lam, K.; Markó, I. E. Org. Lett. 2008, 10, 2773.
Acknowledgements
Financial support for this work by the FRIA (Fonds pour la
Recherche dans l’Industrie et l’Agriculture), the Université catho-
lique de Louvain and Merck, Sharp and Dohme (unrestricted sup-
port to I.E.M.) is gratefully acknowledged.