The presence of additional methylene units (and possibly
heteroatoms) in homocalixarenes results in an enlarged cavity
size as well as conformational flexibility, features that might
be advantageous for binding guests in an induced-fit fash-
ion.3-6 Within the subgroup of homoheteracalixarenes, the
oxygenated analogues have been studied most intensively.3,4
Different combinations and permutations of CH2 and
CH2OCH2 groups have afforded various macrocyclic ho-
mooxacalixarene frameworks. Hexahomotrioxacalixarenes,
the most available symmetrical homologues within this
family, have been applied as efficient synthetic hosts for both
metal and organic (quaternary ammonium) ions, and
fullerenes,3,4 while an oxovanadium complex has recently
been shown to be a superior olefin polymerization catalyst.4h
The synthesis and host-guest properties of homoaza- and
homothiacalixarenes have also been explored, although to a
lesser extent.5,6 However, to date, there have been no reports
of an extension of (homo)heteracalixarene chemistry to the
corresponding third or fourth-row “isologues” of the chal-
cogen series.7
Organoselenium compounds are of great interest from a
biological and pharmaceutical point of view. Inspired by the
importance of natural selenoproteins, synthetic organosele-
nium derivatives have been designed as glutathione peroxi-
dase (GPx) mimics and antithyroid drugs, and applied for
cancer prevention, inflammation protection, immune re-
sponses, and photodynamic tumor therapy.8,9 A number of
macrocycles containing selenium atoms within the ring
system have been synthesized over the years.10 The com-
plexation chemistry of selenoethers as versatile σ-donor
ligands for transition metals and their charge-transfer com-
plexation with electron acceptors are well-established. The
easy (reversible) conversion of selenides to selenoxides and
selenones enables Se-based macrocycles to bind different
guest molecules in its different oxidation states.
From the above, it is evident that (homo)calixarene
macrocycles containing Se atoms are attractive target mol-
ecules. Herein, we report convenient and versatile synthetic
procedures toward hitherto unknown homoselenacalix[n]are-
nes (n ) 3-8).7
Synthetic strategies toward homothiacalixarenes usually
involve substitution reactions of 1,3-bis(mercaptomethyl)-
benzene nucleophiles on 1,3-bis(bromomethyl)benzene de-
rivatives.6 Unfortunately, selenols are not as easy to prepare
and handle as the corresponding thiols, and readily oxidize
to diselenides. The required selenium bisnucleophiles can,
however, in situ be generated from bis(bromomethyl)ben-
zenes and sodium hydroselenide (NaSeH) or, alternatively,
1,3-bis(selenocyanato)benzene derivatives can be used.
Our first trial toward the formation of homoselenacalix-
arenes involved reaction of 1,3-bis(bromomethyl)benzene and
NaSeH (1:1 ratio) in THF under high dilution conditions.
Analysis of the crude reaction mixture by electrospray mass
spectrometry (ESI-MS) pointed toward the formation of
macrocycles containing 2-10 dimethyleneselena links, but
poor solubility hampered efficient purification of the homo-
logues. For this reason, another monomer enforcing favorable
solubility to the macrocycles, 1,3-bis(bromomethyl)-5-tert-
butyl-2-methoxybenzene (1), was envisaged. Moreover, this
substitution pattern allows direct comparison with related
(homo)calixarenes and might enable modification of the
lower rim at a later stage. Dropwise addition of 1 equiv of
NaSeH in ethanol (freshly prepared by reaction of a 1:2 molar
ratio of Se powder and NaBH4 suspended in ethanol) into a
flask containing 1 equiv of 1 in THF at room temperature
over 15 min resulted in the formation of a (kinetic) mixture
of homoselenacalix[n]arenes (n ) 3-7) in 86% total yield
with a 37:20:14:8:7 product ratio of 3-7, respectively
(Scheme 1). The rest of the reaction mixture consisted of
(6) Homothiacalixarenes: (a) Tashiro, M.; Yamato, T. J. Org. Chem.
1981, 46, 1543. (b) Kohno, K.; Takeshita, M.; Yamato, T. J. Chem. Res.
2006, 251. (c) Ashram, M. J. Inclusion Phenom. Macrocyclic Chem. 2006,
54, 253. (d) Tran, H.-A.; Georghiou, P. E. New J. Chem. 2007, 31, 921.
(7) Mitchell described the occurrence of a cyclic trimer, which can be
regarded as a hexahomotriselenacalix[3]arene, as a side product (8%) during
the synthesis of 2,11-diselena[3.3]cyclophanes: (a) Mitchell, R. H. Tetra-
hedron Lett. 1975, 16, 1363. (b) Mitchell, R. H. Can. J. Chem. 1980, 58,
1398.
Scheme 1. Synthetic Pathways toward
Homoselenacalix[n]arenes 3-8
(8) (a) Mugesh, G.; du Mont, W.-W.; Sies, H. Chem. ReV. 2001, 101,
2125. (b) Soriano-Garcia, M. Curr. Med. Chem. 2004, 11, 1657. (c)
Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. ReV. 2004, 104, 6255.
(d) Roy, G.; Mugesh, G. J. Am. Chem. Soc. 2005, 127, 15207. (e) Weng,
X.; Ren, L.; Weng, L.; Huang, J.; Zhu, S.; Zhou, X.; Weng, L. Angew.
Chem., Int. Ed. 2007, 46, 8020
.
(9) GPx mimics: (a) Back, T. G.; Moussa, Z.; Parvez, M. Angew. Chem.
Int. Ed. 2004, 43, 1268. (b) Zade, S. S.; Singh, H. B.; Butcher, R. J. Angew.
Chem., Int. Ed. 2004, 43, 4513. (c) Zhang, X.; Xu, H.; Dong, Z.; Wang,
Y.; Liu, J.; Shen, J. J. Am. Chem. Soc. 2004, 126, 10556. (d) Xu, H.; Gao,
J.; Wang, Y.; Wang, Z.; Smet, M.; Dehaen, W.; Zhang, X. Chem. Commun.
2006, 796. (e) Metanis, N.; Keinan, E.; Dawson, P. E. J. Am. Chem. Soc.
2006, 128, 16684. (f) Bhabak, K. P.; Mugesh, G. Chem.sEur. J. 2007, 13,
4594
.
(10) (a) Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D.; Gu, J.-H.;
Johnston, B. D.; Pinto, B. M. J. Am. Chem. Soc. 1989, 111, 6582. (b)
Levason, W.; Orchard, S. D.; Reid, G. Coord. Chem. ReV. 2002, 225, 159.
(c) Pietschnig, R.; Scha¨fer, S.; Merz, K. Org. Lett. 2003, 5, 1867. (d)
Shimizu, T.; Kawaguchi, M.; Tsuchiya, T.; Hirabayashi, K.; Kamigata, N.
J. Org. Chem. 2005, 70, 5036. (e) Patel, U.; Singh, H. B.; Butcher, R. J.
Eur. J. Inorg. Chem. 2006, 5089. (f) Werz, D. B.; Fischer, F. R.; Kornmayer,
S. C.; Rominger, F.; Gleiter, R. J. Org. Chem. 2008, 73, 8021. (g) Levason,
W.; Manning, J. M.; Nirwan, M.; Ratnani, R.; Reid, G.; Smith, H. L.;
Webster, M. Dalton Trans. 2008, 3486. (h) Gonza´lez-Calera, S.; Eisler,
D. J.; Morey, J. V.; McPartlin, M.; Singh, S.; Wright, D. S. Angew. Chem.,
Int. Ed. 2008, 47, 1111.
polymeric material (and possibly higher cyclooligomers). All
homoselenacalixarenes 3-7 show good solubility in a variety
Org. Lett., Vol. 11, No. 14, 2009
3041