C O M M U N I C A T I O N S
Table 1. Photophysical Data of Dibenzoborole π-Electron
of 3 and 4. The binding constants toward the fluoride ion determined
by these fluorescence titration experiments were 3.5 (( 0.4) × 105
M-1 for 2, 1.1 (( 0.5) × 106 M-1 for 3, and 1.4 (( 0.3) × 106
M-1 for 4 at 20 °C. Moreover, the produced borates can be changed
back to the starting dibenzoboroles without decomposition by
treatment with a stronger fluoride scavenger such as BF3‚OEt2.
These results not only support our assumption concerning the origin
of the solvatochromism but also demonstrate the significant potential
of the present boron system as a new type of fluorescent sensor
for the fluoride ion.13 It should be noted that the output of the
fluoride binding events is the “turn-on” of the fluorescence in terms
of the intensity increase along with the dramatic fluorescence color
changes in the visible region. Further detailed studies on the
photophysics of the dibenzoborole π-electron systems are now in
progress.
Systems
absorption
max/nm (log ꢀ)
fluorescence
λ
max/nm (Φf)a
compd
solvent or additive
λ
2
THF
480 (3.08), 361 (4.65)
479 (2.72), 372 (4.71)
374 (4.78)
488 (2.95), 394 (4.33)
389 (4.56)
561 (0.030)c
423 (0.89)d,e
419 (0.92)d
550 (0.041)c
419 (0.88)d
417 (0.86)d
576 (0.022)c
478 (0.55)d,e
478 (0.42)d
DMF
TBAF/THFb
THF
3
4
DMF
TBAF/THFb
THF
400 (4.65)
504 (3.51), 405 (4.67)
498 (3.11), 425 (4.72)
428 (4.82)
DMF
TBAF/THFb
a Excited at the longest absorption maximum wavelengths, unless
otherwise stated. The Φf is the average values of repeated measurements
within (5% errors. b n-Bu4NF in THF. The data for the produced borates
are those at the saturated points of the spectral changes upon addition of
TBAF. c Determined using fluorescein as a standard. d Determined using
quinine sulfate as a standard. e Excited at the second longest absorption
maximum wavelength.
Acknowledgment. This work was financially supported by the
Ministry of Education, Culture, Sports, Science and Technology,
Japan, and the PRESTO, Japan Science and Technology Corpora-
tion.
Supporting Information Available: Analytical and spectral data
for 1-4 and fluorescence spectra for the titration experiments (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Yuan, Z.; Taylor, N. J.; Marder, T. B.; Williams, I. D.; Kurtz, S. K.;
Cheng, L.-T. J. Chem. Soc., Chem. Commun. 1990, 1489. (b) Yuan, Z.;
Taylor, N. J.; Sun, Y.; Marder, T. B.; Williams, I. D.; Cheng, L.-T. J.
Organomet. Chem. 1993, 449, 27. (c) Yuan, Z.; Taylor, N. J.; Ramachan-
dran, R.; Marder, T. B. Appl. Organomet. Chem. 1996, 10, 305. (d) Yuan,
Z.; Collings, J. C.; Taylor, N. J.; Marder, T. B.; Jardin, C.; Halet, J.-F. J.
Solid State Chem. 2000, 154, 5. (e) Entwistle, C. D.; Marder, T. B. Angew.
Chem., Int. Ed., in press.
(2) (a) Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120, 5112.
(b) Matsumi, N.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 1998, 120, 10776.
(3) (a) Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714. (b) Noda,
T.; Ogawa, H.; Shirota, Y. AdV. Mater. 1999, 11, 283. (c) Shirota, Y.;
Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. J. Am. Chem. Soc. 2000,
122, 11021.
(4) (a) Lee, B. Y.; Wang, S.; Putzer, M.; Bartholomew, G. P.; Bu, X.; Bazan,
G. C. J. Am. Chem. Soc. 2000, 122, 3969. (b) Lee, B. Y.; G. C. Bazan,
J. Am. Chem. Soc. 2000, 122, 8577.
(5) (a) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc., 2000,
122, 6335. (b) Yamaguchi, S.; Shirasaka, T.; Tamao, K. Org. Lett. 2000,
2, 4129.
(6) (a) Zweifel, G.; Clark, G. M.; Leung, T.; Whitney, C. C. J. Organomet.
Chem. 1976, 117, 303. (b) Eisch, J. J.; Galle, J. E.; Kozima, S. J. Am.
Chem. Soc. 1986, 108, 379. (c) Eisch, J. J.; Shafii, B.; Odom, J. D.;
Rheingold, A. L. J. Am. Chem. Soc. 1990, 112, 1847. (d) Byun, Y.-G.;
Saebo. S.; Pittman, C. U., Jr. J. Am. Chem. Soc. 1991, 113, 3689. (e)
Sugihara, Y.; Yagi, T.; Murata, I.; Imamura, A. J. Am. Chem. Soc. 1992,
114, 1479.
Figure 2. Solvent-dependent fluorescence of 2-4. (a) Fluorescence spectra.
(b) Photograph of their solutions under irradiation by 365 nm light. From
left to right: 2 in THF and DMF, 3 in THF and DMF, 4 in THF and DMF
(ca. 1 µM).
Scheme 2
(7) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc., 2001, 123,
11372.
(8) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.
(9) (a) Ko¨ster, R.; Benedikt, G.; Fenzl, W.; Reinert, K. Liebigs Ann. Chem.
1967, 702, 197. (b) Chase, P. A.; Piers, W. E.; Partrick, B. O. J. Am.
Chem. Soc. 2000, 122, 12911.
solvent from THF to DMF. Figure 2 shows the spectral and visual
changes in their fluorescence, which is dependent on the solvents.
We assumed that this solvatochromism is attributable to the
coordination of the donor solvent to the boron atom, which prevents
the occurrence of the pπ-π* conjugation in the LUMO. On the
basis of this consideration, we next studied the sensing ability of
the present boron system toward a fluoride ion. Upon the addition
of a THF solution of n-Bu4NF as a fluoride source to a THF solution
of 2 (Scheme 2), the emission band of 2 at 561 nm indeed became
weak, and the intensity of the fluorescent band at 419 nm
significantly increased (see the Supporting Information). Eventually,
the final spectrum was nearly identical with that in DMF. Similar
fluorescence changes were observed for the other extended systems
(10) Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules;
Academic Press: New York, 1971.
(11) Based on the ZINDO calculation, which was performed using the Gaussian
98 program with ZINDO keyword. A similar calculation has been
reported: Allinger, N. L.; Siefert, J. H. J. Am. Chem. Soc. 1975, 97, 752.
(12) Similar fluorescence spectra in DMF were observed in other donor solvents
such as acetonitrile and N,N-dimethylacetamide.
(13) Fluorescent fluoride sensor: (a) Cooper, C. R.; Spencer, N.; James, T. D.
Chem. Commun. 1998, 1365. (b) Nicolas, M.; Fabre, B.; Simonet, J. Chem.
Commun. 1999, 1881. (c) Anzenbacher, P.; Jurs´ıkova´, K.; Sessler, J. L.
J. Am. Chem. Soc. 2000, 122, 9350. (d) Anzenbacher, P.; Try, A. C.;
Miyaji, H.; Jurs´ıkova´, K.; Lynch, V. M.; Marquez, M.; Sessler, J. L. J.
Am. Chem. Soc. 2000, 122, 10268. (e) Yamaguchi, S.; Akiyama, S.;
Tamao, K. J. Am. Chem. Soc. 2000, 122, 6793. See also: (f) Aldridge,
S.; Bresner, C.; Fallis, I. A.; Coles, S. J.; Hursthouse, M. B. Chem.
Commun. 2002, 740.
JA026689K
9
J. AM. CHEM. SOC. VOL. 124, NO. 30, 2002 8817