(b) L. M. Harwood and R. J. Vickers, in Synthetic Applications of
1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products, ed. A. Padwa, W. Pearson, Wiley & Sons, New York, 2002.
4 (a) R. Grigg, Tetrahedron: Asymmetry, 1995, 6, 2475; (b) P. Allway
and R. Grigg, Tetrahedron Lett., 1991, 32, 5817.
5 J. M. Longmire, B. Wang and X. Zhang, J. Am. Chem. Soc., 2002,
124, 13400.
6 (a) C. Najera, M. D. G. Retamosa and J. M. Sansano, Org. Lett.,
2007, 9, 4025; (b) W. Zeng and Y.-G. Zhou, Tetrahedron Lett.,
2007, 48, 4619; (c) W. Zeng, G.-Y. Chen, Y.-G. Zhou and Y.-X. Li,
J. Am. Chem. Soc., 2007, 129, 750; (d) M. Nyerges, D. Bendell,
A. Arany, D. E. Hibbs, S. J. Coles, M. B. Hursthouse,
P. W. Groundwater and O. Meth-Cohn, Tetrahedron, 2005, 61,
3745; (e) R. Stohler, F. Wahl and A. Pfaltz, Synthesis, 2005, 1431;
(f) W. Zeng and Y.-G. Zhou, Org. Lett., 2005, 7, 5055;
(g) C. Alemparte, G. Blay and K. A. Jørgensen, Org. Lett., 2005,
7, 456; (h) T. F. Knopfel, P. Aschwanden, T. Ichikawa,
T. Watanabe and E. M. Carreira, Angew. Chem., Int. Ed., 2004,
43, 5971; (i) C. Chen, X. Li and S. L. Schreiber, J. Am. Chem. Soc.,
2003, 125, 10174; (j) C. Najera, M. D. G. Retamosa and
J. Sansano, Angew. Chem., Int. Ed., 2008, 47, 6055.
Fig. 1 The results of 1,3-dipolar cycloaddition of other dipolarons/
dipolarophiles catalyzed by AgOAc/1e.
still obtained even for heteroaromatic 2-furyl imino ester
(Table 3, entry 10). High yield and excellent diastereo/
enantioselectivity was also observed when N-phenyl maleimide
was used as the dipolarophile (Table 3, entry 11). Furthermore,
under the optimized reaction conditions, the azomethine ylides
derived from tryptophan, phenylalanine and 2-phenylglycine,
successfully reacted with N-methyl maleimide leading to high
endo-selectivities (498/o2) and excellent enantioselectivities
(91–96% ee) (Table 3, entries 12–14). Fortunately, all the
products are solid, and enantiopure compounds can be easily
obtained by direct crystallization of the crude products.
Finally, in order to probe more deeply the scope and
generality of this AgOAc/TF-BiphamPhos catalytic system,
other dipolarophiles were also examined under the optimized
reaction conditions. As shown in Fig. 1, tert-butyl acrylate
and dimethyl maleate proved to be excellent dipolarophiles
affording high yields and excellent diastereo/enantioselectivities
for this transformation. Moreover, the commercially available
glycine ethyl ester benzophenone Schiff base was an equally
acceptable dipolar partner.
7 (a) A. S. Gothelf, K. V. Gothelf, R. G. Hazell and K. A. Jørgensen,
Angew. Chem., Int. Ed., 2002, 41, 4236; (b) O. Dogan, H. Koyuncu,
P. Garner, A. Bulut, W. J. Youngs and M. Panzner, Org. Lett.,
2006, 8, 4687.
8 (a) S.-i. Fukuzawa and H. Oki, Org. Lett., 2008, 10, 1747;
(b) S. Cabrera, R. G. Arrayas, B. Martın-Matute, F. P. Cossıo
and J. C. Carretero, Tetrahedron, 2007, 63, 6587; (c) T. Liamas,
R. G. Arrayas and J. C. Carretero, Org. Lett., 2006, 8, 1795;
(d) X.-X. Yan, Q. Peng, Y. Zhang, K. Zhang, W. Hong,
X.-L. Hou and Y.-D. Wu, Angew. Chem., Int. Ed., 2006, 45, 1979;
(e) S. Cabrera, R. G. Arrayas and J. C. Carretero, J. Am. Chem.
Soc., 2005, 127, 16394; (f) Y. Oderaotoshi, W. Cheng, S. Fujitomi,
Y. Kasano, S. Minakata and K. M. Omatsu, Org. Lett., 2005, 5,
5043; (g) W. Gao, X. Zhang and M. Raghunath, Org. Lett., 2005, 7,
4241; (h) B. Martın-Matute, S. I. Pereira, E. Peua-Cabrera, J. Adrio,
A. M. S. Silva and J. C. Carretero, Adv. Synth. Catal., 2007, 349,
1714; (i) M. Shi and J.-W. Shi, Tetrahedron: Asymmetry, 2007, 18,
645; (j) A. Lopez-Perez, J. Adrio and J. C. Carretero, J. Am. Chem.
Soc., 2008, 130, 10084; (k) J. Hernandez-Toribio, R. G. Arrayas,
B. Martın-Matute and J. C. Carretero, Org. Lett., 2009, 11, 393.
9 J.-W. Shi, M.-X. Zhao, Z.-Y. Lei and M. Shi, J. Org. Chem., 2008,
73, 305.
In conclusion, we have developed a novel and highly efficient
AgOAc/TF-BiphamPhos catalytic system, which exhibited
excellent reactivity, diastereo/enantioselectivity, and structural
scope in asymmetric 1,3-dipolar cycloaddition of azomethine
ylides derived from various a-substituted a-amino acids with
N-substituted maleimides and other electron-deficient alkenes.
This methodology presented herein nicely complements the
highly efficient Cu(I)/TF-BiphamPhos catalytic system.13 Future
applications of TF-BiphamPhos in asymmetric catalysis are
ongoing in our laboratory and will be reported in due course.
This work is supported by the National Natural Science
Foundation of China, the National Science Foundation for
Fostering Talents in Basic Research of the National Natural
Science Foundation of China (J0730426), and the startup fund
from Wuhan University.
10 (a) S. Saito, T. Tsubogo and S. Kobayashi, J. Am. Chem. Soc.,
2007, 129, 5364; (b) T. Tsubogo, S. Saito, S. K. Seki, Y. Yamashita
and Kobayashi, J. Am. Chem. Soc., 2008, 130, 13321.
11 (a) J. L. Vicario, S. Reboredo, D. Badıa and L. Carrillo, Angew.
Chem., 2007, 119, 5260J. L. Vicario, S. Reboredo, D. Badıa and
L. Carrillo, Angew. Chem., Int. Ed., 2007, 46, 5168; (b) I. Ibrahem,
R. Rios, J. Vesely and A. Cordova, Tetrahedron Lett., 2007, 48, 6252;
(c) X.-H. Chen, W.-Q. Zhang and L.-Z. Gong, J. Am. Chem. Soc.,
2008, 130, 5652; (d) C. Guo, M.-X. Xue, M.-K. Zhu and L.-Z. Gong,
Angew. Chem., Int. Ed., 2008, 47, 3414; (e) Y.-K. Liu, H. Liu, W. Du,
L. Yue and Y.-C. Chen, Chem.–Eur. J., 2008, 14, 9873.
12 64–92% ee were achieved for transition-metal-catalyzed cyclo-
additions of azomethine ylides derived from imino esters other
than glycinate with tert-butyl acrylate or N-phenyl/methyl maleimide,
see ref. 6a, 6i, 8e and 10. Exceptionally, 97% ee was achieved for
the cycloaddition of the in situ azomethine ylide derived from
a-phenylglycine methyl ester and dimethyl maleate with 20 mol%
organocatalyst at 50 1C in 60 h, see ref. 11c; 98% ee for the
cycloaddition of the azomethine ylide derived from phenylalanine
and tert-butyl acrylate catalyzed by 5 mol% Ag(I)/phosphoramidite
in 48 h, see ref. 6j.
Notes and references
1 For recent reviews about 1,3-dipolar cycloaddition reactions of
azomethine ylides, see: (a) L. M. Stanley and M. P. Sibi, Chem.
Rev., 2008, 108, 2887; (b) H. Pellisier, Tetrahedron, 2007, 63, 3235;
(c) G. Pandey, P. Banerjee and S. R. Gadre, Chem. Rev., 2006, 106,
4484; (d) T. M. V. D. Pinho e Melo, Eur. J. Org. Chem., 2006, 2873;
(e) M. Bonin, A. Chauveau and L. Micouin, Synlett, 2006, 2349;
(f) C. Najera and J. M. Sansano, Angew. Chem., Int. Ed., 2005, 44,
6272; (g) I. Coldham and R. Hufton, Chem. Rev., 2005, 105, 2765;
(h) K. V. Gothelf, in Cycloaddition Reactions in Organic Synthesis,
ed. S. Kobayashi, K. A. Jørgensen, Wiley-VCH, Weinheim, 2002;
(i) V. Nair and T. D. Suja, Tetrahedron, 2007, 63, 12247.
13 C.-J. Wang, G. Liang, Z.-Y. Xue and F. Gao, J. Am. Chem. Soc.,
2008, 130, 17250.
14 88 and 86% ee were achieved when N-phenyl and N-methyl
maleimide were used as dipolarophiles and glycine derived
azomethine ylide as dipolaron, and the corresponding endo/exo
ratios were 498/o2, see ref. 13.
15 (a) Quaternary Stereocenters: Challenges and Solution for Organic
Synthesis, ed. J. Christoffers, A. Baro, Wiley-VCH, Weinheim,
2005; (b) K. Juji, Chem. Rev., 1993, 93, 2037.
2 S. L. Schreiber, Science, 2000, 287, 1964.
3 (a) S. G. Pyne, A. S. Davis, N. J. Gates, J. Nicole, J. P. Hartley,
K. B. Lindsay, T. Machan and M. Tang, Synlett, 2004, 2670;
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2905–2907 | 2907