been slow as a result of their difficulty;7-10 the lack of
suitable catalyst systems has limited their further develop-
ment during the past decade. Recently, excellent results on
enantioselective carbonyl addition of arylboron reagents
have been reported by several groups.11-17 In particular,
Yamamoto and Miyaura demonstrated highly enantioselec-
tive addition of arylboronic acids to aldehydes catalyzed by
Ru(II)-bipam complexes.17 For the investigation of a novel
catalyst system,the design of a new chiral ligand is a key
challenge to achieve highly stereocontrolled reactions. Using
bifunctional molecular catalysts containing transition metals
and ancillary ligands with hydrogen bond donor groups (so-
called “concerto catalysis”) is one of the most elegant and
efficient methods for catalytic asymmetric transforma-
tion.18-22 Herein, we report a preparation of a new chiral
phosphine ligand (R)-1 endowed with a fluoroalcohol moiety
and its application to rhodium-catalyzed asymmetric 1,2-
addition of arylboronic acids to aldehydes to give diaryl-
methanols with high enantioselectivities (Scheme 1).
Scheme 1
(7) Focken, T.; Rudolph, J.; Bolm, C. Synthesis 2005, 429–436
.
(8) (a) Suzuki, K.; Ishii, S.; Kondo, K.; Aoyama, T. Synlett 2006, 648–
650. (b) Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 1360–1364.
(c) Arao, T.; Suzuki, K.; Kondo, K.; Aoyama, T. Synthesis 2006, 3809–
Enantiopure binaphthyl ligand (R)-1 tethered to a fluoro-
alcohol moiety was synthesized via nucleophilic transforma-
tions of ester (R)-2,23 which was readily prepared from (R)-
BINOL (Scheme 2). Sequential introduction of trifluoromethyl
3814
(9) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L. Org.
Lett. 2006, 8, 1479–1481
(10) Jagt, R. B. C.; Toullec, P. Y.; Schudde, E. P.; de Vries, J. G.;
Feringa, B. L.; Minnaard, A. J. J. Comb. Chem. 2007, 9, 407–414
(11) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem.
Commun. 2009, 5713–5715
.
.
.
.
Scheme 2
(12) For Rh-catalyzed asymmetric arylations of activated ketones with
arylboron reagents, see: (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew.
Chem., Int. Ed. 2006, 45, 3353–3356. (b) Toullec, P. Y.; Jagt, R. B. C.; de
Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006, 8, 2715–
2718. (c) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2008, 47, 4351–4353. (d) Tomita, D.; Yamatsugu,
K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946–6948
(13) For Pd-catalyzed asymmetric intramolecular arylation of ketones
.
with arylboron substrates, see: Liu, G.; Lu, X. J. Am. Chem. Soc. 2006,
128, 16504–16505
.
(14) For transition-metal-catalyzed asymmetric arylations of N-tosyl
imines with arylboron reagents, see: (a) Tokunaga, N.; Otomaru, Y.;
Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc.
2004, 126, 13584–13585. (b) Otomaru, Y.; Tokunaga, N.; Shintani, R.;
Hayashi, T. Org. Lett. 2005, 7, 307–310. (c) Kuriyama, M.; Soeta, T.; Hao,
X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128–8129. (d)
Kurihara, K.; Yamamoto, Y.; Miyaura, N. AdV. Synth. Catal. 2009, 351,
260–270. (e) Ma, G.-N.; Zhang, T.; Shi, M. Org. Lett. 2009, 11, 875–878,
and references therein
(15) For Cu-catalyzed asymmetric arylation of aldehydes with arylboron
.
ates, see: Tomita, D.; Kanai, M.; Shibasaki, M. Chem. Asian J. 2006, 1-2,
161–166
.
(16) For Ni-catalyzed asymmetric arylation of aldehydes with arylboron
reagents, see: (a) Arao, T.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2007,
48, 4115–4117. (b) Yamamoto, K.; Tsurumi, K.; Sakurai, F.; Kondo, K.;
Aoyama, T. Synthesis 2008, 3585–3590. (c) Sakurai, F.; Kondo, K.;
Aoyama, T. Chem. Pharm. Bull. 2009, 57, 511–512. (d) Sakurai, F.; Kondo,
K.; Aoyama, T. Tetrahedron Lett. 2009, 50, 6001–6003
.
(17) For Ru-catalyzed asymmetric arylation of aldehydes with arylbo-
24
ronic acids, see: Yamamoto, Y.; Kurihara, K.; Miyaura, N. Angew. Chem.,
groups to (R)-2 by the use of CF3SiMe3 provided bis(tri-
Int. Ed. 2009, 48, 4414–4416
.
fluoromethyl)methanol (R)-4. Reduction of phosphine oxide
(R)-4 by HSiCl3 afforded phosphine (R)-1 without loss of
enantiopurity.
Next, the new rhodium complex with chiral ligand (R)-1
was used for the asymmetric arylation of aldehydes with
arylboronic acids. A mixture of p-tolylaldehyde (5a) and
phenylboronic acid (6a) in xylene/H2O was heated at 60 °C
for 24 h in the presence of t-BuONa (2 equiv) and a catalytic
amount of Rh(I) complex prepared in situ by mixing
dinuclear complex [Rh(CH2dCH2)2Cl]2 (1.5 mol %) with
(18) Reviews and accounts: (a) Clapham, S. E.; Hadzovic, A.; Morris,
R. H. Coord. Chem. ReV. 2004, 248, 2201–2237. (b) Samec, J. S. M.;
Ba¨ckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. ReV. 2006, 35,
237–248. (c) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006,
4, 393–406. (d) Ito, M.; Ikariya, T. Chem. Commun. 2007, 5134–5142.
(19) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1995, 117, 2675–2676. (b) Sandoval, C. A.; Ohkuma,
T.; Muiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490–13503.
(20) (a) Watanabe, M.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003,
125, 7508–7509. (b) Ito, M.; Sakaguchi, A.; Kobayashi, C.; Ikariya, T. J. Am.
Chem. Soc. 2007, 129, 290–291. (c) Hasegawa, Y.; Watanabe, M.; Gridnev,
I. D.; Ikariya, T. J. Am. Chem. Soc. 2008, 130, 2158–2159.
(21) (a) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am.
Chem. Soc. 2001, 123, 7473–7474. (b) Abdur-Rashid, K.; Clapham, S. E.;
Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem.
Soc. 2002, 124, 15104–15118.
(23) Uozumi, Y.; Suzuki, N.; Ogiwara, A.; Hayashi, T. Tetrahedron
1994, 50, 4293–4302.
(22) Li, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2009, 131,
6967–6969.
(24) Prakash, G. K. S.; Yudin, A. K. Chem. ReV. 1997, 97, 757–786.
Org. Lett., Vol. 12, No. 11, 2010
2521