promoters,5 and improvements in transition-metal-mediated
couplings6 have now made possible the total synthesis of
complex natural products possessing the C-aryl glycoside
functional group. Despite this progress, concerns about the
use and disposal of environmentally hazardous reagents,
solvents, and heavy metals have motivated chemists to
investigate alternative “green” methods for forming carbon-
carbon bonds, the backbone of all organic compounds.
dehyde acetonide (1a) with 2,3-dihalopropenes. Stirring a
DMF (or 1:1 DMF:H2O) solution of 1a with 1.5 equiv of
2,3-dibromopropene 2a and 1 equiv of indium metal led to
the desired homoallylic alcohol product in a disappointing
20% yield (Scheme 1). Careful study of the reaction revealed
Scheme 1. Glyceraldehyde Allylation with 2,3-Dihalopropenes
Organoindium compounds have been shown to participate
in a wide range of transition-metal-mediated processes for
carbon-carbon bond formation.7 These environmentally
benign reagents are air- and moisture-stable and can undergo
cross-coupling reactions in an atom-efficient manner.8 Fur-
thermore, the indium-mediated allylation of aldehydes and
ketones in aqueous media is a powerful and stereoselective
process that has been applied to the synthesis of a variey of
complex natural products.9 In this letter, we detail our
findings on a sequential indium-mediated carbon-carbon
bond-forming process that efficiently establishes the carbon
backbone of 2-deoxy-C-aryl glycosides.
Motivated by the studies of Otera and Alcaide10 and
others11 on the tin-mediated Barbier-type allylation of
aldehydes with 2,3-dibromopropene, and hoping to avoid the
use of toxic metals and acidic conditions required for such
couplings, our initial investigations centered around the
indium-mediated allylation of readily available D-glyceral-
that addition of the indium metal to 2a in the presence or
absence of glyceraldehyde acetonide led to a vigorous
exothermic reaction and the visible production of gas. We
reasoned that, upon formation, the 2-bromoallylindium
reagent undergoes a rapid decomposition to indium bromide
and allene. In contrast, Li has previously reported the high-
yielding allylation of aldehydes with 3-bromo-2-chloropro-
pene in water.12 Since 2,3-dichloropropene is commercially
available and inexpensive, we decided to investigate the
allylation of D-glyceraldehyde acetonide with this reagent
in the presence of an iodide source to generate the more
reactive 3-iodo-2-chloropropene in situ. Indeed, addition of
indium metal (1 equiv) and TBAI (1 equiv) to a 2 M DMF
solution of glyceraldehyde and 2,3-dichloropropene (2b, 1.5
equiv) led to homoallylic alcohol 4 in 92% yield and 7:1
diastereoselectivity; the major diastereomer was assigned the
anti stereochemistry in analogy with previously reported
indium allylations of glyceraldehyde.13 The allylation reac-
tion takes place with similar efficiency (89% yield) and
diastereoselectivity (dr ) 6.5:1) in 1:1 DMF:H2O when
2-chloro-3-iodopropene14 is employed as the allyl source.
Subsequent cross-coupling of 4 with 1 equiv of Ph3In in the
presence of Pd(dppf)Cl2 (5 mol %) at 80 °C for 18 h
proceeded uneventfully,7j providing an 83% yield of 5a, the
spectral data of which matched closely those reported for
the same compound by Wang et al.13 Similarly, treatment
of Garner’s aldehyde 1d with 2b in the presence of indium
(5) (a) Sharma, G. V. M.; Raman, K. K.; Sreenivas, P.; Radha Krishna,
P.; Chorghade, M. S. Tetrahedron: Asymmetry 2002, 13, 687. (b) Hosoya,
T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116,
1004.
(6) Palladium, Tin. (a) Parker, K. A.; Koh, Y. J. Am. Chem. Soc. 1994,
116, 11149. (b) Parker, K. A.; Coburn, C. A.; Koh, Y. J. Org. Chem. 1995,
60, 2938. (c) Apsel, B.; Bender, J. A.; Escobar, M.; Kaelin, D. E.; Lopez,
O. D.; Martin, S. F. Tetrahedron Lett. 2003, 44, 1075. (d) Kaelin, D. E.,
Jr.; Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am. Chem. Soc. 2003, 125,
12994. (e) Kaelin, D. E.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc.
2001, 123, 6937. (f) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R.
J. Am. Chem. Soc. 1995, 117, 6605. Ruthenium. (g) Schmidt, B.; Settelkau,
T. Tetrahedron 1997, 53, 12991. (h) Schmidt, B. Org. Lett. 2000, 2, 791.
Chromium. (i) Pulley, S. R.; Carey, J. P. J. Org. Chem. 1999, 63, 5275. (j)
Fuganti, C.; Serra, S. Synlett 1999, 8, 1241. Nickel. (k) Moineau, C.; Bolitt,
V.; Sinou, D. J. Org. Chem. 1998, 63, 582–591. (l) Sinou, D.; Moineau, C.
Recent Res. DeV. Org. Chem. 1999, 3, 1. (m) Bertini, B.; Moineau, C.;
Sinou, D.; Gesekus, G.; Vill, V. Eur. J. Org. Chem. 2001, 2, 375. (n)
Explosive Lewis acids such as AgClO4 have also been successfully used
to promote C-aryl glycosidations. See: Toshima, K.; Matsuo, G.; Tatsuta,
K. Tetrahedron Lett. 1992, 33, 2175.
(7) (a) Perez, I.; Perez Sestelo, J.; Sarandeses, L. A. Org. Lett. 1999, 1,
1267. (b) Perez, I.; Perez-Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc.
2001, 123, 4155. (c) Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3,
3201. (d) Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. (e)
Lehmann, U.; Awasthi, S.; Minehan, T. Org. Lett. 2003, 5, 2405. (f)
Rodriguez, D.; Perez Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2003,
68, 2518. (g) Baker, L.; Minehan, T. J. Org. Chem. 2004, 69, 3957. (h)
Rodriguez, D.; Perez Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2004,
69, 8136. (i) Riveiros, R.; Rodriguez, D.; Perez Sestelo, J.; Sarandeses,
L. A. Org. Lett. 2006, 8, 1403. (j) Rivieros, R.; Saya, L.; Perez Sestelo, J.;
Sarandeses, L. A. Eur. J. Org. Chem. 2008, 11, 1959.
(8) Takami, K.; Yorimitsu, H.; Shinokobu, H.; Matsubara, S.; Oshima,
K. Org. Lett. 2001, 3, 1997.
(12) Yi, X.-H.; Meng, Y.; Li, C.-J. Tetrahedron Lett. 1997, 38, 4731.
(13) (a) Pan, C.-F.; Zhang, Z.-H.; Sun, G.-J.; Wang, Z.-Y. Org. Lett.
2004, 6, 3059. (b) Cleghorn, L. A. T.; Cooper, R. R.; Fishwick, C. W. G.;
Grigg, R.; MacLachlan, W. S.; Rasparini, M.; Sridharan, V. J. Organomet.
Chem. 2003, 687, 483. (c) Paquette, L. A.; Mitzel, T. M. Tetrahedron Lett.
1995, 36, 6863. (d) Paquette, L. A.; Mitzel, T. M. J. Am. Chem. Soc. 1996,
118, 1931. (e) Paquette, L. A.; Mitzel, T. M. J. Org. Chem. 1996, 61, 8799.
(14) 2-Chloro-3-iodopropene was prepared by treatment of commercially
available 2,3-dichloropropene with NaI in acetone at room temperature
overnight: Pace, V.; Martinez, F.; Fernandez, M.; Sinisterra, J. V.; Alcantara,
A. R. Org. Lett. 2008, 9, 2661.
(9) For reviews, see: (a) Li, C. J. Chem. ReV. 2005, 105, 3095. (b) Li,
C. J.; Chan, T. H. Organic Reactions in Aqueous Media; Wiley: New York,
1997. (c) Li, C. J.; Chan. T. H. Organic Synthesis in Water; Grieco, P. A.,
Ed.; Thomson Science: Glasgow, Scotland, 1998. (d) Li, C. J.; Chan, T. H.
Tetrahedron Lett. 1991, 32, 7017. (e) Chan, T. H.; Yang, Y. J. Am. Chem.
Soc. 1999, 121, 3228.
(10) Mandai, T.; Nokami, J.; Yano, T.; Yoshinaga, Y.; Otera, J. J. Org.
Chem. 1984, 49, 172.
(11) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem.
2005, 70, 2713.
Org. Lett., Vol. 11, No. 16, 2009
3735