LETTER
3-Aroylindoles from N-(2-Iodoaryl)enaminones
1483
Dieguez, M. Chem. Rev. 2008, 108, 2796. (f) Yamada,
K.-i.; Tomioka, K. Chem. Rev. 2008, 108, 2874.
(g) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
(h) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
(i) Carril, M.; SanMartin, R.; Dominguez, E. Chem. Soc.
Rev. 2008, 37, 639.
assembling 2-iodoanilines, aroyl chlorides, and terminal
alkynes, a wide variety of indole derivatives can be syn-
thesized by using this protocol that can be particularly
useful for the preparation of libraries.
(7) Cacchi, S.; Fab rizi, G. Chem. Rev. 2005, 105, 2873.
(8) Cacchi, S.; Fabrizi, G.; Parisi, L. M. Org. Lett. 2003, 5, 3843.
(9) (a) Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10,
2629. (b) Bernini, R.; Cacchi, S.; Fabrizi, G.; Sferrazza, A.
Synthesis 2009, 1209.
(10) Karpov, A. S.; Müller, T. J. Org. Lett. 2003, 5, 3451.
(11) Typical Procedure for the Cyclization of N-(2-Iodoaryl)-
enaminones 1 to 3-Acylindoles 2
Acknowledgment
Work carried out in the framework of the National Project ‘Stereo-
selezione in Sintesi Organica. Metodologie ed Applicazioni’ sup-
ported by the Ministero dell'’Università e della Ricerca Scientifica
e Tecnologica and by the University ‘La Sapienza’.
References and Notes
To a stirred solution of 1d (118.2 mg, 0.25 mmol) in DMF
(2.5 mL), CuI (2.4 mg, 0.0125 mmol), 1,10-phenanthroline
(2.3 mg, 0.0125 mmol), and K2CO3 (69.0 mg, 0.50 mmol)
were added at r.t. The reaction mixture was warmed at
100 °C and stirred for 10 h. After cooling, the reaction
mixture was diluted with Et2O, washed with 1 N HCl and
brine, dried over Na2SO4, and concentrated under reduced
pressure. The residue was purified by chromatography on
SiO2 [n-hexane–EtOAc, 70:30] to afford 82.8 mg (96%
yield) of 2d: white solid; mp 184–185 °C. IR (KBr): 3423,
2927, 1601, 1562, 1435, 1223 cm–1. 1H NMR (400 MHz,
DMSO-d6): d = 12.22 (br s, 1 H), 7.84 (d, J = 7.9 Hz, 1 H),
7.60–7.57 (m, 2 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.27 (t, J = 7.9
Hz, 1 H), 7.18 (t, J = 7.8 Hz, 2 H), 7.04–6.92 (m, 4 H), 6.85
(d, J = 7.6 Hz, 1 H), 3.67 (s, 1 H). 13C NMR (100.6 MHz,
DMSO-d6): d = 191.2, 164.3 (d, JCF = 251 Hz), 159.3, 144.4,
137.1 (d, JCF = 22 Hz), 136.3, 133.2, 132.2 (d, JCF = 9 Hz),
129.7, 128.7, 123.5, 122.5, 122.0, 121.1, 115.4, 115.3, 115.1
(d, JCF = 4 Hz), 112.6, 112.4, 55.6. 19F NMR (376 MHz,
DMSO-d6): d = –108.6. Anal. Calcd for C22H16FNO2: C,
76.51; H, 4.67. Found: C, 76.40; H, 4.58.
(1) Wijsmuller, W. F. A.; Wanner, M. J.; Koomen, G.-J.; Pandit,
U. K. Heterocycles 1986, 24, 1795.
(2) (a) Bell, M. R.; D’Ambra, T. E.; Kumar, V.; Eissenstat,
M. A.; Herrmann, J. L. Jr.; Wetzel, J. R.; Rosi, D.; Philion,
R. E.; Daum, S. J.; Hlasta, D. J.; Kullnig, R. K.; Ackerman,
J. H.; Haubrich, D. R.; Luttinger, D. A.; Baizman, E. R.;
Miller, M. S.; Ward, S. J. J. Med. Chem. 1991, 34, 1099.
(b) D’Ambra, T. E.; Estep, K. G.; Bell, M. R.; Eissenstat,
M. A.; Josef, K. A.; Ward, S. J.; Haycock, D. A.; Baizman,
E. R.; Casiano, F. M.; Beglin, N. C.; Chippari, S. M.; Grego,
J. D.; Kullnig, R. K.; Daley, G. T. J. Med. Chem. 1992, 35,
124. (c) Sheppard, G. S.; Pireh, D.; Carrera, G. M.; Bures,
M. G.; Heyman, H. R.; Steinman, D. H.; Davidsen, S. K.;
Phillips, J. G.; Guinn, D. E.; May, P. D.; Conway, R. D.;
Rhein, D. A.; Calhoun, W. C.; Albert, D. H.; Magoc, T. J.;
Carter, G. W.; Summers, J. B. J. Med. Chem. 1994, 37,
2011. (d) Lehr, M. J. Med. Chem. 1997, 40, 2694.
(e) Curtin, M. L.; Davidsen, S. K.; Heyman, H. R.; Garland,
R. B.; Sheppard, G. S.; Florjancic, A. S.; Xu, L.; Carrera,
G. M.; Steinman, D. H.; Trautmann, J. A.; Albert, D. H.;
Magoc, T. J.; Tapang, P.; Rhein, D. A.; Conway, R. G.; Luo,
G.; Denissen, J. F.; Marsh, K. C.; Morgan, D. W.; Summers,
J. B. J. Med. Chem. 1998, 41, 74.
(12) Compounds 2a and 3 were isolated in 30% and 60% yield,
respectively, when the reaction was carried out in DMA at
120 °C (3 h).
(13) Typical Procedure for the Preparation of 3-Acylindoles 2
Omitting the Isolation of Enaminone Intermediates
To a stirred solution of 2-iodoaniline (109.5 mg, 0.5 mmol)
in MeOH (1.0 mL), 1,3-diphenylprop-2-yn-1-one (154.5
mg, 0.75 mmol) was added at r.t. The reaction mixture was
warmed at 120 °C and stirred for 48 h. After that period the
volatile materials were evaporated at reduced pressure, and
CuI (4.8 mg, 0.025 mmol), 1,10-phenanthroline (4.5 mg,
0.025 mmol), K2CO3 (138.0 mg, 1.0 mmol), and DMF (4
mL) were added. The reaction mixture was warmed at
100 °C and stirred for 2.5 h. After cooling, the reaction
mixture was diluted with Et2O, washed with1 N HCl and
brine, dried over Na2SO4, and concentrated under reduced
pressure. The residue was purified by chromatography on
SiO2 [n-hexane–EtOAc, 75:25] to afford 106 mg (76%
yield) of 2a: white solid; mp 223–224 °C. IR (KBr): 3055,
1593, 1564, 1450, 1421 cm–1. 1H NMR (400 MHz, DMSO-
d6): d = 12.19 (br s, 1 H), 7.75 (d, J = 7.9 Hz, 1 H), 7.54–7.51
(m, 3 H), 7.40–7.35 (m, 3 H), 7.26–7.10 (m, 7 H). 13C NMR
(100.6 MHz, DMSO-d6): d = 192.6, 144.6, 140.3, 136.3,
132.1, 131.8, 130.1, 129.6, 129.0, 128.7, 128.5, 128.3,
123.4, 121.9, 121.1, 112.7, 112.4. Anal. Calcd for
(3) For the acylation of N-protected indoles, see: (a) Ketcha,
D. M.; Gribble, G. W. J. Org. Chem. 1985, 50, 5451. For
the acylation of NH free indoles, see: (b) Ottoni, O.; Neder,
A. de.V.F.; Dias, A. K. D.; Cruz, R. P. A.; Equino, L. B. Org.
Lett. 2001, 7, 1005. For the preparation of 3-acylindoles via
the Vilsmeier–Haack reaction, see: (c) Sundberg, R. J. The
Chemistry of Indoles; Academic Press: New York, 1970.
For the acylation of indole Grignard reagents, see:
(d) Heacock, R. A.; Kasparek, S. Adv. Heterocycl. Chem.
1969, 10, 61. see ref. 3c. For the acylation of 3-indolylzinc
chlorides, see: (e) Bergman, J.; Venemalm, L. Tetrahedron
1990, 46, 6061. (f) Faul, M. M.; Winneroski, L. L.
Tetrahedron Lett. 1997, 38, 4749. For other procedures,
see: (g) Bergman, J.; Bäckvall, J. E.; Lindströn, J. O.
Tetrahedron 1973, 29, 971. (h) Eyley, S. C.; Giles, R. G.;
Heaney, H. Tetrahedron Lett. 1985, 26, 4649. (i) Pindur,
U.; Flo, C.; Akgun, E.; Tunali, M. Liebigs Ann. Chem. 1986,
9, 1621. (j) Pfeuffer, L.; Sody, E.; Pindur, U. Chem.-Ztg.
1987, 111, 84.
(4) (a) Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H.
Synthesis 1990, 215. (b) Arcadi, A.; Cacchi, S.; Carnicellli,
V.; Marinelli, F. Tetrahedron 1994, 50, 437.
(5) Osuka, A.; Mori, Y.; Suzuki, H. Chem. Lett. 1982, 2031.
(6) For recent reviews, see: (a) Ley, S. V.; Thomas, A. W.
Angew. Chem. 2003, 115, 5558. (b) Evano, G.; Blanchard,
N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (c) Deutsch,
C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916.
(d) Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359.
(e) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.;
C21H15NO: C, 84.82; H, 5.08. Found: C, 84.71; H, 5.19.
(14) Ge, H.; Niphakis, M. J.; Georg, G. I. J. Am. Chem. Soc. 2008,
130, 3708.
(15) (a) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.
(b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802.
Synlett 2009, No. 9, 1480–1484 © Thieme Stuttgart · New York