M. Layek et al. / Tetrahedron Letters 50 (2009) 4878–4881
4881
Br
Br
+ BH+
-Cu (I)
2
N
N
R
H
B
Cu(I)
(I) Cu
R
Y
X
B = DMF
Scheme 2. Probable mechanism for the Cu-mediated intramolecular cyclization of alkyne 1.
2. Paris, D.; Cottin, M.; Demonchaux, P.; Augert, G.; Dupassieux, P.; Lenoir, P.;
Peck, M. J.; Jasserand, D. J. Med. Chem. 1995, 38, 669–685.
3. Isaac, M.; Slassi, A.; O’Brien, A.; Edwards, L.; MacLean, N.; Bueschkens, D.; Lee,
D. K. H.; McCallum, K.; Lannoy, I. D.; Demchyshyn, L.; Kamboj, R. Bioorg. Med.
Chem. Lett. 2000, 10, 919–921.
4. Al-awar, R. S.; Ray, J. E.; Hecker, K. A.; Huang, J.; Waid, P. P.; Shih, C.; Brooks, H.
B.; Spencer, C. D.; Watkins, S. A.; Patel, B. R.; Stamm, N. B.; Ogg, C. A.; Schultz, R.
M.; Considine, E. L.; Faul, M. M.; Sullivan, K. A.; Kolis, S. P.; Grutsch, J. L.; Joseph,
S. Bioorg. Med. Chem. Lett. 2004, 14, 3217–3220.
5. Zhu, G.; Conner, S. E.; Zhou, X.; Chan, H.-K.; Shih, C.; Engler, T. A.; Al-awar, R. S.;
Brooks, H. B.; Watkins, S. A.; Spencer, C. D.; Schultz, R. M.; Dempsey, J. A.;
Considine, E. L.; Patel, B. R.; Ogg, C. A.; Vasudevan, V.; Lytle, M. L. Bioorg. Med.
Chem. Lett. 2004, 14, 3057–3061.
6. Marchand, P.; Puget, A.; Baut, G. L.; Emig, P.; Czech, M.; Günther, E. Tetrahedron
2005, 61, 4035–4041. and references cited therein.
7. Barange, D. K.; Nishad, T. C.; Swamy, N. K.; Bandameedi, V.; Kumar, D.;
Sreekanth, B. R.; Vyas, K.; Pal, M. J. Org. Chem. 2007, 72, 8547.
8. Pal, M.; Batchu, V. R.; Subramanian, V.; Parasuraman, K.; Swamy, N. K.; Kumar,
S. Tetrahedron 2005, 61, 9869.
9. Ezquerra, J.; Pedregal, C.; Lamas, C.; Barluenga, J.; Prez, M.; Garca-Martin, G. A.;
Gonzlez, J. M. J. Org. Chem. 1996, 61, 5804.
has been demonstrated via Heck, Sonogashira, or Suzuki reaction,
respectively.
AplausiblemechanismfortheCu-mediatedintramolecularcycli-
zation of alkyne 1 is shown in Scheme 2. The reaction seemed to pro-
ceed via initial activation of the triple bond of 1 via coordination to
the Cu-salt to form the
r-complex X. Regioselective nucleophilic
attack of the tetrahydroquinoline moiety to the Cu-coordinated tri-
ple bond through its nitrogen in an endo dig fashion provides the Cu-
vinyl species Y. This on subsequent protonation in situ regenerates
the catalyst producing the pyrroloquinolines (2).
In conclusion, we have developed a new strategy for the intra-
molecular cyclization of 8-alkynyl 1,2,3,4-tetrahydroquinoline to
afford 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolines directly with
high regioselectivity. The reaction proceeds via C–N bond forming
reaction in the presence of Cu-catalyst. Further functionalization of
the compounds synthesized was carried out under Sonogashira,
Heck, and Suzuki reaction conditions. The methodology therefore
should find applications in the short synthesis of pyrroloquino-
line-based compounds of potential pharmacological interest.
10. Spectra data for selected compounds: compound 2a: white solid; mp 103–
105 °C; Rf (10% ethyl acetate/n-hexane) 0.35; 1H NMR (DMSO-d6, 400 MHz) d
7.62–7.41 (m, 6H, Ar-H), 7.03 (s, 1H, Ar-H), 6.54 (s, 1H, –CH@), 4.19 (t,
J = 5.2 Hz, 2H, –CH2), 2.93 (t, J = 5.6 Hz, 2H, –CH2), 2.07–2.13 (m, 2H, –CH2); 13
C
NMR (DMSO-d6, 200 MHz) d 22.4 (–CH2), 23.9 (–CH2), 43.3 (–CH2), 99.5, 112.1,
119.5, 120.7, 124.5, 126.9, 127.9, 128.2 (2C), 128.4, 128.7, 131.4, 133.4, 140.5;
IR (cmÀ1, KBr) 2929, 1475, 763; Mass (ES) m/z 314.1 (M+3, 100%); HRMS (ESI):
calcd for C17H15BrN (M+H)+ 312.039, found 312.038; compound 2b: yellow
solid; mp 92–95 °C; Rf (10% ethyl acetate/n-hexane) 0.35; 1H NMR (DMSO-d6,
400 MHz) d 7.5 (m, 3H, Ar-H), 7.30 (d, J = 7.8 Hz, 2H, Ar-H), 7.01 (s, 1H, Ar-H),
6.49 (s, 1H, –CH@), 4.17 (t, J = 5.2 Hz, 2H, –CH2), 2.92 (t, J = 5.6 Hz, 2H, –CH2),
2.37 (s, 3H, CH3), 2.12–2.07 (m, 2H, –CH2); 13C NMR (DMSO-d6, 200 MHz) d
20.7 (–CH3), 22.4 (–CH2), 23.9 (–CH2), 43.2 (–CH2), 99.0, 112.0, 119.3, 120.5,
124.4, 126.9, 128.1 (2C), 128.5, 129.3 (2C), 133.4, 137.4, 140.6; IR (cmÀ1, KBr)
2924, 1720, 1477, 829; Mass (ES) m/z 326.0 (M+1, 100%); HRMS (ESI): calcd for
C18H17BrN (M+H)+ 326.054, found 326.054; compound 2d: colorless liquid; Rf
(50% ethyl acetate/n-hexane) 0.3; 1H NMR (DMSO-d6, 400 MHz) d 7.39 (d,
J = 1.9 Hz, 1H, Ar-H), 6.89 (d, J = 1.5 Hz, 1H, Ar-H), 6.14 (s, 1H, –CH@), 4.65 (br s,
1H, –CH2OH), 4.04 (t, J = 5.6 Hz, 2H, –CH2), 3.68 (t, J = 6.8 Hz, 2H, –CH2), 2.90–
2.87 (m, 4H, –CH2), 2.13–2.06 (m, 2H, –CH2); 13C NMR (DMSO-d6, 200 MHz) d
22.1 (–CH2), 23.8 (–CH2), 36.1 (–CH2), 41.1 (–CH2), 60.2 (–CH2), 97.7, 111.4,
118.6, 119.4, 123.4, 126.9, 132.5, 139.1; IR (cmÀ1, CHCl3) 2928, 1717, 1480,
1216, 769; Mass (ES) m/z 282.0 (M+3, 100%); HRMS (ESI): calcd for C13H15BrNO
(M+H)+ 280.033, found 280.033.
Acknowledgments
The authors thank Dr. V. Dahanukar and Mr. A. Mukherjee for
their encouragement and the analytical group of DRL for spectral
data. Mr. M.L. thanks CPS-DRL, Hyderabad, India for allowing him
to pursue this work as a part of his Ph.D. program.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Stanton, J. L.; Ackerman, M. H. J. Med. Chem. 1983, 26, 986–989.