6598
C.M. Gauss et al. / Tetrahedron 65 (2009) 6591–6599
4.26. 3-(tert-Butyloxycarbonyl)-1,2,11,11a-tetrahydrocyclo-
propa[c]naphtho[1,2-e]indol-4-one (N-Boc-iso-CNI, 35)
constants for were determined from the slope of the line obtained
from the least-squares treatment (r2¼0.98) of the plot of ln[(AfꢂAi)/
(AfꢂA)] versus time.
A sample of 34 (2 mg, 5
DMF (250
L) under Ar and cooled to 0 ꢀC. NaH (60% suspension in
mineral oil, 600 g, 15 mol) was added and the mixture was stirred
for 30 min. At this time, the reaction was quenched with the addition
of pH 7.0 phosphate buffer (300 L) and diluted with H2O (1 mL) and
mmol) was dissolved in 3:1 (v/v) THF–
Acknowledgements
m
m
m
We gratefully acknowledge the financial support of NIH
(CA41986) and the Skaggs Institute for Chemical Biology. K.S.M. is
a Skaggs fellow.
m
EtOAc (5 mL). The organic layer was collected, dried (Na2SO4), and
concentrated in vacuo. PTLC (SiO2, 10ꢁ20 cm, 10% EtOAc–hexanes)
afforded 35 (1.0 mg, 54%) as a white solid. 1H NMR (600 MHz, CDCl3)
References and notes
d
8.56 (d, J¼8.3 Hz, 1H), 8.07 (s, 1H), 7.82–7.79 (m, 1H), 7.70–7.65 (m,
1. Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin, D. G. J. Am.
Chem. Soc. 1981, 103, 7629; For a detailed discussion of the DNA alkylation se-
lectivity of CC-1065, see: Boger, D. L.; Johnson, D. S.; Yun, W.; Tarby, C. M. Bioorg.
Med. Chem. 1994, 2, 115; Boger; Coleman, R. S.; Invergo, B. J.; Sakya, S. M.;
Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C. J. Am.
Chem. Soc. 1990, 112, 4623.
3H), 6.91 (s, 1H), 3.72 (d, J¼7.5 Hz,1H), 3.65 (m, 2H),1.47 (s, 9H), 0.92
(t, J¼7.5 Hz, 1H), 0.88–0.87 (m, 1H); HRMALDI–FTMS (DHB) m/z
348.1600 (MþHþ, C22H21NO3 requires 348.1594). Compound (þ)-35:
23
23
[a
]
þ75 (c 0.1, CHCl3); (ꢂ)-35: [
a
]
ꢂ75 (c 0.1, CHCl3).
D
D
2. Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto,
I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915; Duocarmycin A DNA alkyl-
ation properties: Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P.
A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961; Boger, D. L.; Ishizaki, T.;
Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 6645; Boger, D. L.; Yun, W.; Ter-
ishima, S.; Fukuda, Y.; Nakatani, K.; Kitos, P. A.; Jin, Q. Bioorg. Med. Chem. Lett.
1992, 2, 759; See also: Boger, D. L.; McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem.
Soc. 1997, 119, 311 and 1996, 118, 2109.
3. Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto, I.; Yasuzawa,
T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037; Duocarmycin SA DNA
alkylation properties: Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem. Soc. 1994,
116, 1635; Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1993, 115, 9872; MacMillan, K.
S.; Boger, D. L. J. Am. Chem. Soc. 2008, 130, 16521.
4.27. seco-iso-CNI-TMI (36)
A sample of 35 (1.55 mg, 5.5
m
mol) was treated with 4 N HCl/
EtOAc (100
moved under a stream of N2 and dried under high vacuum for
30 min. The gray residue was dissolved in DMF (60 L) and treated
with 5,6,7-trimethoxyindole-2-carboxylic (1.37 mg,
acid28
5.5 mol) and EDCI (3.15 mg, 16 mol). The mixture was stirred
m
L) and stirred at 23 ꢀC for 1 h. The solvent was re-
m
m
m
under Ar at 23 ꢀC for 18 h in the absence of light before the solvent
was removed under a stream on N2. PTLC (SiO2, 20ꢁ20 cm, 50%
EtOAc–hexanes) afforded 36 (1.6 mg, 57%) as a white solid. 1H NMR
4. Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.; Takahashi, K.;
Sano, H.; Saitoh, Y. Chem. Pharm. Bull. 1995, 43, 378.
5. Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.; Furumai,
T. J. Antibiot. 2003, 56, 107; Structure correction: Tichenor, M. S.; Kastrinsky,
D. B.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 8396; DNA alkylation properties:
Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarashi, Y.; Boger, D. L. J. Am.
Chem. Soc. 2003, 125, 10971; Trzupek, J. D.; Gottesfeld, J. M.; Boger, D. L. Nat.
Chem. Biol. 2006, 2, 79; Tichenor, M. S.; Trzupek, J. D.; Kastrinsky, D. B.; Shiga,
F.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 15683; Tichenor, M. S.;
MacMillan, K. S.; Trzupek, J. D.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem.
Soc. 2007, 129, 10858.
6. Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. 1996, 35, 1438; For additional
reviews, see: Tichenor, M. S.; Boger, D. L. Nat. Prod. Rep. 2008, 25, 220; Boger,
D. L. Acc. Chem. Res. 1995, 28, 20; Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 3642; Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329.
7. Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1, 315.
8. Boger, D. L.; Garbaccio, R. M. Bioorg. Med. Chem. 1997, 5, 263.
(500 MHz, CDCl3)
d 9.73 (br s, 1H), 9.51 (s, 1H), 8.68 (s, 1H), 8.33
(d, J¼8.8 Hz, 1H), 8.29 (d, J¼7.4 Hz, 1H), 7.94 (d, J¼7.4 Hz, 1H), 7.68
(d, J¼8.8 Hz, 1H), 7.60 (t, J¼7.4 Hz, 1H), 7.54 (t, J¼7.4 Hz, 1H), 6.74
(s, 1H), 6.54 (s, 1H), 4.71 (app d, J¼9.9 Hz, 1H), 4.60 (app t, J¼8.1 Hz,
1H), 4.46 (m, 1H), 4.18 (s, 3H), 4.00 (s, 3H), 3.87 (s, 3H), 3.69 (m, 1H),
3.24 (t, J¼11.4 Hz, 1H); IR (film) nmax 3411, 2959, 1591, 1454, 1412,
1318, 1260, 1107, 1050, 803 cmꢂ1; HRMALDI–FTMS (DHB) m/z
516.1430 (Mþ, C29H25ClN2O5 requires 516.1452). Compound (1S)-
23
23
36: [
a
]
þ17 (c 2.0, CH2Cl2); (1R)-36: [
a]
ꢂ17 (c 1.0, CH2Cl2).
D
D
4.28. iso-CNI-TMI (37)
9. Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043.
10. Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477; Tse, W.; Boger, D. L.
Chem. Biol. 2004, 11, 1607.
A sample of 36 (7.1 mg, 13.7
m
mol) was dissolved in freshly
distilled CH3CN (140
mL) under Ar. Anhydrous DBU (10
m
L, 68 mol)
m
11. Ambroise, Y.; Boger, D. L. Bioorg. Med. Chem. Lett. 2002, 12, 303; Boger, D. L.;
Garbaccio, R. M. J. Org. Chem. 1999, 64, 5666; Boger, D. L.; Santillan, A., Jr.;
Searcey, M.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 11554; Boger, D. L.; Boyce, C. W.;
Johnson, D. S. Bioorg. Med. Chem. Lett. 1997, 7, 235; Boger, D. L.; Johnson, D. S.
J. Am. Chem. Soc. 1995, 117, 1443; Boger, D. L.; Munk, S. A.; Zarrinmayeh, H. J. Am.
Chem. Soc. 1991, 113, 3980; Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Zarrin-
mayeh, H.; Kitos, P. A.; Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem. Biol.
Interact. 1990, 73, 29; Boger, D. L.; Munk, S. A.; Zarrinmayeh, H.; Ishizaki, T.;
Haught, J.; Bina, M. Tetrahedron 1991, 47, 2661.
12. Boger, D. L.; Bollinger, B.; Hertzog, D. L.; Johnson, D. S.; Cai, H.; Mesini, P.;
Garbaccio, R. M.; Jin, Q.; Kitos, P. A. J. Am. Chem. Soc. 1997, 119, 4987.
13. Boger, D. L.; Hertzog, D. L.; Bollinger, B.; Johnson, D. S.; Cai, H.; Goldberg, J.;
Turnbull, P. J. Am. Chem. Soc. 1997, 119, 4977.
was added at 23 ꢀC, and the mixture was stirred for 1 h. The re-
action mixture was then concentrated under a stream of N2 and
applied directly to PTLC (SiO2, 10ꢁ20 cm, 50% EtOAc–hexanes) to
afford 37 (4.0 mg, 60%) as a white solid. 1H NMR
d 10.50 (br s, 1H),
8.55 (d, J¼8.2 Hz, 1H), 8.06 (s, 1H), 7.85–7.80 (m, 1H), 7.70–7.65 (m,
3H), 7.17 (s, 1H), 6.04 (s, 1H), 6.90 (s, 1H), 4.18 (s, 3H), 4.00 (s, 3H),
3.85 (s, 3H), 3.70 (d, J¼7.5 Hz, 1H), 3.65 (m, 2H), 0.90 (s, J¼7.5 Hz,
1H); HRMALDI–FTMS (DHB) m/z 481.1759 (MþHþ, C29H24N2O5 re-
23
quires 481.1758). Compound (þ)-37: [
a
]
þ125 (c 0.1, THF); (ꢂ)-37:
D
23
[
a]
ꢂ120 (c 0.1, THF).
D
14. Boger, D. L.; Turnbull, P. J. Org. Chem. 1997, 62, 5849; Boger, D. L.; Turnbull, P.
J. Org. Chem. 1998, 63, 8004.
15. Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem. Rev.1997, 97, 787.
16. Parrish, J. P.; Hughes, T. V.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 80.
17. For related studies, see: Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793;
Boger, D. L.; Munk, S. A.; Ishizaki, T. J. Am. Chem. Soc. 1991, 113, 2779; Boger, D. L.;
Yun, W. J. Am. Chem. Soc. 1994, 116, 5523; Boger, D. L.; Yun, W. J. Am. Chem. Soc.
1994, 116, 7996; Boger, D. L.; Santillan, A., Jr.; Searcey, M.; Brunette, S. R.;
Wolkenberg, S. E.; Hedrick, M. P.; Jin, Q. J. Org. Chem. 2000, 65, 4101.
18. Boger, D. L.; Ishizaki, T.; Wysocki, R. J., Jr.; Munk, S. A.; Kitos, P. A.; Suntornwat,
O. J. Am. Chem. Soc. 1989, 111, 6461; Boger, D. L.; Ishizaki, T.; Kitos, P. A.; Sun-
tornwat, O. J. Org. Chem. 1990, 55, 5823.
19. Boger, D. L.; Yun, W.; Teegarden, B. R. J. Org. Chem. 1992, 57, 2873; Boger, D. L.;
McKie, J. A. J. Org. Chem. 1995, 60, 1271; Boger, D. L.; McKie, J. A.; Boyce, C. W.
Synlett 1997, 515; Kastrinsky, D. B.; Boger, D. L. J. Org. Chem. 2004, 69, 2284.
20. Boger, D. L.; Munk, S. A. J. Am. Chem. Soc. 1992, 114, 5487.
21. Gallagher, P. T.; Hicks, T. A.; Lightfoot, A. P.; Owten, W. M. Tetrahedron Lett. 1994,
35, 289; For implementation in related studies, see: Boger, D. L.; McKie, J. A.;
Cai, H.; Cacciari, B.; Baraldi, P. G. J. Org. Chem. 1996, 61, 1710; Boger, D. L.; Han,
4.29. Aqueous solvolysis reactivity: pH 3
Compounds 22 and 35 (50 g) were dissolved in CH3OH (1.5 mL)
m
and mixed with pH 3 aqueous buffer (1.5 mL). The buffer contained
4:1:20 (v:v:v) 0.1 M citric acid, 0.2 M Na2HPO4, and deionized H2O,
respectively. Immediately after mixing, the UV spectra of the so-
lution were measured against a reference solution containing
CH3OH (1.5 mL) and the aqueous buffer (1.5 mL), and this reading
was used as the initial absorbance value. The solution was stop-
pered, protected from light, and allowed to stand at 25 ꢀC. The UV
spectra were recorded at regular intervals until a constant value
was obtained for the long-wavelength absorbance. The increase of
the absorbance at 230 nm was monitored. The solvolysis rate