Flexibility in Porphyrin-Based Molecular Wires
A R T I C L E S
nm, then the dipole-dipole coupling energy is inversely
proportional to R.3 The DEER technique measures the coupling
frequency by monitoring how a refocused echo, at one
microwave frequency, is affected by a 180° microwave pulse
at a second frequency. DEER has been widely used to measure
distances in the 1.5-7.5 nm range in peptides, proteins, protein
complexes, and polynucleotides,9–17 and it is a promising
technique for probing the conformations of molecular wires18-21
and other rodlike molecules.22-25
their electronic delocalization.33,37,38 Coordination to multiden-
tate ligands can also be used to bend porphyrin-based molecular
wires, as illustrated by the template-directed synthesis of
porphyrin nanorings,39,40 which leads to the question of whether
these molecules should be regarded as shape-persistent. Here
we report a series of DEER distance measurements on butadiyne-
linked porphyrin oligomers terminated with stable TEMPO
radicals, P1-P4 (Figure 1). The results show that they are
shape-persistent, and yet that their shapes can readily be
deformed by binding to ligands such as L1 and L2. Assembly
of ladder complexes by binding oligomers P2 and P3 with ligand
L3 has also been confirmed by DEER distance measurements.
The crystal structure of a bis-TEMPO porphyrin monomer P1′
(identical to P1 except with different solubilizing side chains)
has been solved and the crystallographic radical-radical distance
compares well with the DEER results.
The high polarizability and electronic delocalization of the
porphyrin macrocycle make it an ideal unit from which to
construct molecular wires,26-29 and conjugated porphyrin oli-
gomers exhibit a range of wirelike behavior including long-
range charge transport,30-33 high conductance,34 rapid exciton
migration,35 and large two-photon absorption cross-sections.36,37
Supramolecular self-assembly can be used to control the
torsional angles in these molecular wires and thus to control
Methods and Materials
Synthesis. Full experimental details for the synthesis and
characterization of compounds P1-P4, P1′, L1 and L3 are provided
in the Supporting Information. The synthesis of L2 has been
reported previously.39
(12) Jeschke, G.; Bender, A.; Paulsen, H.; Zimmermann, H.; Godt, A. J.
Magn. Reson. 2004, 169, 1–12.
(13) Denysenkov, V. P.; Prisner, T. F.; Stubbe, J.; Bennati, M. Proc. Natl.
Acad. Sci. 2006, 103, 13386–13390.
UV-Vis-NIR Titrations. The stability constants and stoichi-
ometries of the complexes P2·L1, P4·L2, and (P2)2 ·(L3)2 were
measured by UV-vis-NIR titration in toluene at 298 K. See the
Supporting Information for titration spectra and binding isotherms.
X-ray Crystallography. Crystals of the monomer with 3,5-di-
tert-butylphenyl side chains, P1′, were grown by vapor diffusion
of methanol into a solution of the porphyrin in dioxane. X-ray
diffraction data were collected at the synchrotron at Daresbury UK.
See the Supporting Information for further details; CCDC 725782.
Molecular Dynamics (MD) Calculations. Molecular dynamics
simulations were performed in HyperChem with a temperature of
180 K without explicit solvent for a simulation period of 500 ps.
The X-ray crystal structure of porphyrin monomer P1′ was used
to refine the MM+ force field parameters. More details are given
in the Supporting Information.
DEER Experiments. The oligomers without templates were
dissolved in d8-toluene with 10% d5-pyridine (d8 -PhMe/Py) and
d14-o-terphenyl with 5% 4-benzylpyridine (d14-oTP/BnPy). The
monodentate ligands Py and BnPy were added to coordinate the
zinc centers to prevent aggregation. The complexes of L1, L2, and
L3 were measured in d8-PhMe.
The four-pulse DEER sequence was performed at X-band (∼9.3
GHz) with a Bruker ELEXSYS 680 EPR spectrometer. The tubes
with frozen sample were inserted into a 3 mm split ring resonator
(Bruker EN 4118X-MS3). The experiments were conducted at 50
K using a (π)/(2)-τ1-π-(τ1 + t)-πpump-(τ2 - t)-π-τ2-echo
pulse sequence with 32 ns pulses at the observer frequency and a
12 ns pump frequency pulse. The frequency of the πpump pulse was
set to the maximum of the nitroxide echo detected field sweep
spectrum and the observer frequency was offset by 65 MHz (see
the Supporting Information for exceptions). A ( phase cycle was
applied to the first observer pulse to remove receiver offsets. The
τ1 was set at 400 ns for deuterated solvents and was stepped eight
times in 56 ns increments to average out deuterium modulations
from hyperfine coupling to the solvent matrix. τ2 ranged between
4.5 and 16 µs. The time, t, was incremented in either 8 or 16 ns
steps and hence each time trace normally consisted of between 500
(14) Georgieva, E. R.; Ramlall, T. F.; Borbat, P. P.; Freed, J. H.; Eliezer,
D. J. Am. Chem. Soc. 2008, 130, 12856–12857.
(15) Alexander, N.; Bortolus, M.; Al-Mestarihi, A.; Mchaourab, H.; Meiler,
J. Structure 2008, 16, 181–195.
(16) Kay, C. W. M.; El Mkami, H.; Cammack, R.; Evans, R. W. J. Am.
Chem. Soc. 2007, 129, 4868–4869.
(17) Banham, J. E.; Baker, C. M.; Ceola, S.; Day, I. J.; Grant, G. H.;
Groenen, E. J. J.; Rodgers, C. T.; Jeschke, G.; Timmel, C. R. J. Magn.
Reson. 2008, 191, 202–218.
(18) Martin, R. E.; Pannier, M.; Diederich, F.; Gramlich, V.; Hubrich, M.;
Spiess, H. W. Angew. Chem., Int. Ed. 1998, 37, 2834–2837.
(19) Godt, A.; Schulte, M.; Zimmermann, H.; Jeschke, G. Angew. Chem.,
Int. Ed. 2006, 45, 7560–7564.
(20) Margraf, D.; Bode, B. E.; Marko, A.; Schiemann, O.; Prisner, T. F.
Mol. Phys. 2007, 105, 2153–2160.
(21) Bode, B. E.; Margraf, D.; Plackmeyer, J.; Du¨rner, G.; Prisner, T. F.;
Schiemann, O. J. Am. Chem. Soc. 2007, 129, 6736–6745.
(22) Pornsuwan, S.; Bird, G.; Schafmeister, C. E.; Saxena, S. J. Am. Chem.
Soc. 2006, 128, 3876–3877.
(23) Bird, G. H.; Pornsuwan, S.; Saxena, S.; Schafmeister, C. E. ACS Nano
2008, 2, 1857–1864.
(24) Lovett, J. E.; Bowen, A. M.; Timmel, C. R.; Jones, M. W.; Dilworth,
J. R.; Caprotti, D.; Bell, S. G.; Wong, L. L.; Harmer, J. Phys. Chem.
Chem. Phys. 2009, 11, 6840–6848.
(25) Raitsimring, A. M.; Gunanathan, C.; Potapov, A.; Efremenko, I.;
Martin, J. M. L.; Milstein, D.; Goldfarb, D. J. Am. Chem. Soc. 2007,
129, 14138–14139.
(26) Crossley, M. J.; Burn, P. L. J. Chem. Soc., Chem. Commun. 1991,
1569–1571.
(27) Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994, 264,
1105–1111.
(28) Anderson, H. L. Chem. Commun. 1999, 2323–2330.
(29) Tsuda, A.; Osuka, A. Science 2001, 293, 79–82.
(30) Kang, B. K.; Aratani, N.; Lim, J. K.; Kim, D.; Osuka, A.; Yoo, K.-H.
Chem. Phys. Lett. 2005, 412, 303–306.
(31) Susumu, K.; Frail, P. R.; Angiolillo, P. J.; Therien, M. J. J. Am. Chem.
Soc. 2006, 128, 8380–8381.
(32) Winters, M. U.; Dahlstedt, E.; Blades, H. E.; Wilson, C. J.; Frampton,
M. J.; Anderson, H. L.; Albinsson, B. J. Am. Chem. Soc. 2007, 129,
4291–4297.
(33) Grozema, F. C.; Houarner-Rassin, C.; Prins, P.; Siebbeles, L. D. A.;
Anderson, H. L. J. Am. Chem. Soc. 2007, 129, 13370–13371.
(34) Sedghi, G.; Sawada, K.; Esdaile, L. J.; Hoffmann, M.; Anderson, H. L.;
Bethell, D.; Haiss, W.; Higgins, S. J.; Nichols, R. J. J. Am. Chem.
Soc. 2008, 130, 8582–8583.
(38) Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.;
Anderson, H. L. J. Am. Chem. Soc. 2002, 124, 9712–9713.
(39) Hoffmann, M.; Ka¨rnbratt, J.; Chang, M.-H.; Herz, L. M.; Albinsson,
B.; Anderson, H. L. Angew. Chem., Int. Ed. 2008, 47, 4993–4996.
(40) Hoffmann, M.; Wilson, C. J.; Odell, B.; Anderson, H. L. Angew.
Chem., Int. Ed. 2007, 46, 3122–3125.
(35) Chang, M.-H.; Hoffmann, M.; Anderson, H. L.; Herz, L. M. J. Am.
Chem. Soc. 2008, 130, 10171–10178.
(36) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.;
Taylor, P. N.; Anderson, H. L. J. Phys. Chem. B. 2005, 109, 7223–
7236.
(37) Drobizhev, M.; Stepanenko, Y.; Rebane, A.; Wilson, C. J.; Screen,
T. E. O.; Anderson, H. L. J. Am. Chem. Soc. 2006, 128, 12432–12433.
(41) Taylor, P. N.; Huuskonen, J.; Rumbles, G.; Aplin, R. T.; Williams,
E.; Anderson, H. L. Chem. Commun. 1998, 909–910.
9
J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009 13853