Page 7 of 9
ACS Catalysis
overview of directing groups applied in metal-catalysed C–H
CONCLUSIONS
functionalisation chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743. (b)
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C
Bond Formation via Heteroatom-Directed C−H Bond Activation.
Chem. Rev. 2010, 110, 624–655. (c) Satoh, T.; Miura, M. Oxidative
Coupling of Aromatic Substrates with Alkynes and Alkenes under
Rhodium Catalysis. Chem. Eur. J. 2010, 16, 11212–11222. (d) Chen,
X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-Catalyzed C–
1
2
3
4
5
6
7
8
Mechanistic insights into the working mode of ruthenium-
catalyzed meta-C–H functionalization have unraveled
a
carboxylate-phosphine synergistic manifold for effective
singlet stabilization. Thereby, a uniquely effective catalytic
system for remote arene functionalization was identified for
remote C–H functionalization, fully tolerating purine and
uridine nucleobases, sensitive lipids, functionalized amino
acids and peptides, fluorescent tags as well as unprotected sugar
motifs. The high levels of site- and chemo-selectivity of our
robust, synergistic ruthenium catalysis should prove invaluable
for enabling late-stage modifications of biorelevant compounds
in academia as well as by practitioners in agrochemical and
pharmaceutical industries.
H
Activation/C–C Cross-Coupling Reactions: Versatility and
Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115.
(3) (a) Simonetti, M.; Cannas, D. M.; Just-Baringo, X.; Vitorica-
9
Yrezabal, I. J.; Larrosa, I. Cyclometallated ruthenium catalyst enables
late-stage directed arylation of pharmaceuticals. Nat. Chem. 2018, 10,
724–731. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak
Coordination as a Powerful Means for Developing Broadly Useful C–
H Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788–802. (c)
Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed
C−H Functionalization Reactions. Chem. Rev. 2010, 110, 1147–1169.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and spectral data for all new compounds
(PDF). This material is available free of charge via the Internet at
(4)
(a) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao,
S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-
Q. Ligand-accelerated non-directed C–H functionalization of arenes.
Nature 2017, 551, 489–493. (b) Kuninobu, Y.; Ida, H.; Nishi, M.;
Kanai, M. A meta-selective C–H borylation directed by a secondary
interaction between ligand and substrate. Nat. Chem. 2015, 7, 712–717.
(c) Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K.
M.; Yu, J.-Q. Ligand-enabled meta-C–H activation using a transient
mediator. Nature 2015, 519, 334–338. (d) Leow, D.; Li, G.; Mei, T.-S.;
Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on
template. Nature 2012, 486, 518–522. (e) Phipps, R. J.; Gaunt, M. J. A
Meta-Selective Copper-Catalyzed C–H Bond Arylation. Science 2009,
323, 1593–1597. (f) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R.
E.; Smith, M. R. Remarkably Selective Iridium Catalysts for the
Elaboration of Aromatic C–H Bonds. Science 2002, 295, 305–308.
AUTHOR INFORMATION
Corresponding Author
ORCID
Lutz Ackermann: 0000-0001-7034-8772
Notes
(5)
(a) Gandeepan, P.; Koeller, J.; Korvorapun, K.; Mohr, J.;
The authors declare no competing financial interest.
Ackermann, L. Visible-Light-Enabled Ruthenium-Catalyzed meta-
C−H Alkylation at Room Temperature. Angew. Chem. Int. Ed. 2019,
58, 9820–9825. (b) Sagadevan, A.; Greaney, M. F. meta-Selective C−H
Activation of Arenes at Room Temperature Using Visible Light: Dual-
Function Ruthenium Catalysis. Angew. Chem. Int. Ed. 2019, 58, 9826–
9830. (c) Wang, X.-G.; Li, Y.; Liu, H.-C.; Zhang, B.-S.; Gou, X.-Y.;
Wang, Q.; Ma, J.-W.; Liang, Y.-M. Three-Component Ruthenium-
Catalyzed Direct Meta-Selective C–H Activation of Arenes: A New
Approach to the Alkylarylation of Alkenes. J. Am. Chem. Soc. 2019,
141, 13914–13922. (d) Fumagalli, F.; Warratz, S.; Zhang, S.-K.;
Rogge, T.; Zhu, C.; Stückl, A. C.; Ackermann, L. Arene-Ligand-Free
Ruthenium(II/III) Manifold for meta-C−H Alkylation: Remote Purine
Diversification. Chem. Eur. J. 2018, 24, 3984–3988. (e) Korvorapun,
K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stückl, A. C.; Ackermann,
L. Sequential meta-/ortho-C–H Functionalizations by One-Pot
Ruthenium(II/III) Catalysis. ACS Catal. 2018, 8, 886–892. (f) Mihai,
M. T.; Genov, G. R.; Phipps, R. J. Access to the meta position of arenes
through transition metal catalysed C–H bond functionalisation: a focus
on metals other than palladium. Chem. Soc. Rev. 2018, 47, 149–171.
(g) Leitch, J. A.; Frost, C. G. Ruthenium-catalysed σ-activation for
remote meta-selective C–H functionalisation. Chem. Soc. Rev. 2017,
46, 7145–7153. (h) Li, B.; Fang, S.-L.; Huang, D.-Y.; Shi, B.-F. Ru-
Catalyzed Meta-C–H Benzylation of Arenes with Toluene Derivatives.
Org. Lett. 2017, 19, 3950–3953. (i) Li, G.; Li, D.; Zhang, J.; Shi, D.-
Q.; Zhao, Y. Ligand-Enabled Regioselectivity in the Oxidative Cross-
coupling of Arenes with Toluenes and Cycloalkanes Using Ruthenium
Catalysts: Tuning the Site-Selectivity from the ortho to meta Positions.
ACS Catal. 2017, 7, 4138–4143. (j) Li, J.; Korvorapun, K.; De Sarkar,
S.; Rogge, T.; Burns, D. J.; Warratz, S.; Ackermann, L. Ruthenium(II)-
catalysed remote C–H alkylations as a versatile platform to meta-
decorated arenes. Nat. Commun. 2017, 8, 15430. (k) Li, Z.-Y.; Li, L.;
Li, Q.-L.; Jing, K.; Xu, H.; Wang, G.-W. Ruthenium-Catalyzed meta-
Selective C−H Mono- and Difluoromethylation of Arenes through
ortho-Metalation Strategy. Chem. Eur. J. 2017, 23, 3285–3290. (l)
Paterson, A. J.; Heron, C. J.; McMullin, C. L.; Mahon, M. F.; Press, N.
J.; Frost, C. G. α-Halo carbonyls enable meta selective primary,
secondary and tertiary C–H alkylations by ruthenium catalysis. Org.
ACKNOWLEDGMENT
Generous support by the DAAD (fellowship to K.K.) and the DFG
(Gottfried-Wilhelm-Leibniz prize) is gratefully acknowledged. We
thank Dr. Christopher Golz (University Göttingen) for the X-ray
diffraction analysis.
REFERENCES
(1)
(a) Davies, H. M. L.; Liao, K. Dirhodium tetracarboxylates
as catalysts for selective intermolecular C–H functionalization. Nat.
Rev. Chem. 2019, 3, 347–360. (b) Koga, Y.; Kaneda, T.; Saito, Y.;
Murakami, K.; Itami, K. Synthesis of partially and fully fused
polyaromatics by annulative chlorophenylene dimerization. Science
2018, 359, 435–439. (c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.;
Yu, J.-Q. Palladium-Catalyzed Transformations of Alkyl C–H Bonds.
Chem. Rev. 2017, 117, 8754–8786. (d) Shin, K.; Kim, H.; Chang, S.
Transition-Metal-Catalyzed C–N Bond Forming Reactions Using
Organic Azides as the Nitrogen Source: A Journey for the Mild and
Versatile C–H Amination. Acc. Chem. Res. 2015, 48, 1040–1052. (e)
Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)–H and
C(sp3)–H Bonds by Using Bidentate Directing Groups. Angew. Chem.
Int. Ed. 2013, 52, 11726–11743. (f) Wencel-Delord, J.; Glorius, F. C–
H bond activation enables the rapid construction and late-stage
diversification of functional molecules. Nat. Chem. 2013, 5, 369–375.
(g) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C–H Bond
Functionalization: Emerging Synthetic Tools for Natural Products and
Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960–9009. (h)
Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C−H
Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011,
111, 1315–1345. (i) McMurray, L.; O'Hara, F.; Gaunt, M. J. Recent
developments in natural product synthesis using metal-catalysed C–H
bond functionalisation. Chem. Soc. Rev. 2011, 40, 1885–1898.
(2)
(a) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.;
Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord,
J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A comprehensive
ACS Paragon Plus Environment