J. H. Dam, R. Madsen
FULL PAPER
Shannon, E. M. Schubert, J. Dare, B. Ugarkar, M. A. Ussery,
M. J. Phelan, J. Nat. Prod. 1992, 55, 1569–1581.
the mixture was stirred for 5 min before the cooling bath was re-
moved and the reaction was warmed to room temperature over 1 h.
The solvent was removed in vacuo and the residue was purified
by flash chromatography (CH2Cl2/MeOH, 99:1 Ǟ 24:1) to afford
71.0 mg (81%) of a solid. Rf = 0.40 (CH2Cl2/MeOH, 19:1); m.p.
93–94 °C (ref.[11] 98–100 °C). [α]2D1 = +52.0 (c = 1.0, CHCl3). IR
[5]
M. Ouarzane-Amara, J.-F. Franetich, D. Mazier, G. R. Pettit,
L. Meijer, C. Doerig, I. Desportes-Livage, Antimicrob. Agents
Chemother. 2001, 45, 3409–3415.
A. McLachlan, N. Kekre, J. McNulty, S. Pandey, Apoptosis
2005, 10, 619–630.
a) S. D. Shnyder, P. A. Cooper, N. J. Millington, J. H. Gill,
M. C. Bibby, J. Nat. Prod. 2008, 71, 321–324; b) G. R. Pettit,
N. Melody, D. L. Herald, J. Nat. Prod. 2004, 67, 322–327; c)
G. R. Pettit, B. Orr, S. Ducki, Anti-Cancer Drug Des. 2000, 15,
389–395.
a) J. McNulty, J. J. Nair, C. Griffin, S. Pandey, J. Nat. Prod.
2008, 71, 357–363; b) A. S. Kireev, O. N. Nadein, V. J. Agustin,
N. E. Bush, A. Evidente, M. Manpadi, M. A. Ogasawara, S. K.
Rastogi, S. Rogelj, S. T. Shors, A. Kornienko, J. Org. Chem.
2006, 71, 5694–5707; c) T. Hudlicky, M. Moser, S. C. Banfield,
U. Rinner, J.-C. Chapuis, G. R. Pettit, Can. J. Chem. 2006, 84,
1313–1337; d) J. McNulty, V. Larichev, S. Pandey, Bioorg. Med.
Chem. Lett. 2005, 15, 5315–5318; e) G. R. Pettit, N. Melody, J.
Nat. Prod. 2005, 68, 207–211; f) U. Rinner, T. Hudlicky, H.
Gordon, G. R. Pettit, Angew. Chem. Int. Ed. 2004, 43, 5342–
5346; g) U. Rinner, H. L. Hillebrenner, D. R. Adams, T. Hud-
licky, G. R. Pettit, Bioorg. Med. Chem. Lett. 2004, 14, 2911–
2915; h) T. Hudlicky, U. Rinner, D. Gonzales, H. Akgun, S.
Schilling, P. Siengalewicz, T. A. Martinot, G. R. Pettit, J. Org.
Chem. 2002, 67, 8726–8743; i) J. McNulty, J. Mao, R. Gibe, R.
Mo, S. Wolf, G. R. Pettit, D. L. Herald, M. R. Boyd, Bioorg.
Med. Chem. Lett. 2001, 11, 169–172.
[6]
[7]
(neat): ν = 3500–3200, 2904, 1644, 1612, 1475, 1453, 1366, 1335,
˜
1
1285, 1218, 1069, 1030, 730 cm–1. H NMR (500 MHz, CDCl3): δ
= 8.03 (s, 1 H), 7.54–7.23 (m, 10 H), 6.66 (s, 1 H), 5.95 (d, J =
1.5 Hz, 1 H), 5.94 (d, J = 1.5 Hz, 1 H), 5.27 (d, J = 11.2 Hz, 1 H),
5.23 (d, J = 11.3 Hz, 1 H), 4.98 (br. s, 1 H), 4.64 (d, J = 11.8 Hz,
1 H), 4.59 (d, J = 11.8 Hz, 1 H), 4.45 (br. s, 1 H), 4.25 (br. s, 1 H),
4.05 (t, J = 3.0 Hz, 1 H), 4.01–3.97 (m, 2 H), 3.82 (dd, J = 10.1,
13.0 Hz, 1 H), 3.10 (d, J = 13.1 Hz, 1 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 165.4, 152.0, 143.1, 137.6, 137.5, 136.9, 136.5, 128.5,
128.4, 128.3, 128.0, 127.9, 127.5, 116.2, 101.7, 101.1, 76.7, 74.9,
72.4, 71.4, 71.0, 67.6, 49.9, 41.5 ppm. HRMS: calcd. for
[8]
1
C28H27NNaO8 [M + Na]+ m/z 528.1630; found m/z 528.1621. H
NMR spectroscopic data are in accordance with literature val-
ues.[11]
Pancratistatin: Dibenzyl ether 18 (34.2 mg, 67.7 µmol) was dis-
solved in EtOAc (2.0 mL) and Pd(OH)2/C (104 mg) was added. The
suspension was degassed and stirred while H2 was bubbled through
for 2 h (1.0 mL of EtOAc was added after 1.5 h). The mixture was
stirred under an H2 atmosphere for an additional 2 h and then
filtered through a small plug of Celite, which was rinsed with 40%
MeOH in CH2Cl2. The solvent was removed in vacuo to afford
22.0 mg (99%) of a white solid. Rf = 0.24 (CH2Cl2/MeOH, 9:1).
Decomposes above 250 °C. [α]2D1 = +37 (c = 1.0, DMSO) [ref.[2a]
[α]3D4 = +48 (c = 1.0, DMSO), ref.[12e] [α]2D3 = +38 (c = 1.08, DMSO),
ref.[12g] [α]2D6 = +40.9 (c = 1.0, DMSO), ref.[12h] [α]2D5 = +44.0 (c =
[9]
G. R. Pettit, G. R. Pettit III, G. Groszek, R. A. Backhaus,
D. L. Doubek, R. J. Barr, A. W. Meerow, J. Nat. Prod. 1995,
58, 756–759.
For a recent review, see: M. Manpadi, A. Kornienko, Org. Prep.
Proced. Int. 2008, 40, 107–161.
[10]
[11]
[12]
S. Danishefsky, J. Y. Lee, J. Am. Chem. Soc. 1989, 111, 4829–
4837.
1.0, DMSO)]. IR (neat): ν = 3348, 2926, 1671, 1615, 1597, 1462,
˜
1416, 1347, 1296, 1228, 1082, 1065, 1036, 876 cm–1. 1H NMR
(500 MHz, [D6]DMSO): δ = 13.06 (s, 1 H), 7.50 (s, 1 H), 6.49 (s, 1
H), 6.06 (s, 1 H), 6.04 (s, 1 H), 5.36 (d, J = 4.0 Hz, 1 H), 5.08 (d,
J = 5.8 Hz, 1 H), 5.05 (d, J = 6.1 Hz, 1 H), 4.83 (d, J = 7.5 Hz, 1
H), 4.28 (m, 1 H), 3.97 (m, 1 H), 3.85 (m, 1 H), 3.74–3.67 (m, 2
H), 2.97 (br. d, J = 11.8 Hz, 1 H) ppm. 13C NMR (75 MHz, [D6]-
DMSO): δ = 169.4, 152.0, 145.3, 135.6, 131.6, 107.4, 101.7, 97.6,
73.2, 70.1, 69.9, 68.4, 50.4, 39.5 (assigned by HSQC) ppm. HRMS:
calcd. for C14H16NO8 [M + H]+ m/z 326.0870; found m/z 326.0864.
NMR spectroscopic data are in accordance with literature val-
ues.[11,12c].
a) M. Li, A. Wu, P. Zhou, Tetrahedron Lett. 2006, 47, 3707–
3710; b) H. Ko, E. Kim, J. E. Park, D. Kim, S. Kim, J. Org.
Chem. 2004, 69, 112–121; c) G. R. Pettit, N. Melody, D. L. Her-
ald, J. Org. Chem. 2001, 66, 2583–2587; d) J. H. Rigby, U. S. M.
Maharoof, M. E. Mateo, J. Am. Chem. Soc. 2000, 122, 6624–
6628; e) P. Magnus, I. K. Sebhat, Tetrahedron 1998, 54, 15509–
15524; f) T. J. Doyle, M. Hendrix, D. VanDerveer, S. Javan-
mard, J. Haseltine, Tetrahedron 1997, 53, 11153–11170; g) T.
Hudlicky, X. Tian, K. Königsberger, R. Maurya, J. Rouden, B.
Fan, J. Am. Chem. Soc. 1996, 118, 10752–10765; h) B. M.
Trost, S. R. Pulley, J. Am. Chem. Soc. 1995, 117, 10143–10144.
a) L. Hyldtoft, R. Madsen, J. Am. Chem. Soc. 2000, 122, 8444–
8452; b) L. Hyldtoft, C. S. Poulsen, R. Madsen, Chem. Com-
mun. 1999, 2101–2102.
For a review, see: R. Madsen, Eur. J. Org. Chem. 2007, 399–
415.
a) R. N. Monrad, C. B. Pipper, R. Madsen, Eur. J. Org. Chem.
2009, 3387–3395; b) R. Csuk, E. Prell, S. Reissmann, Tetrahe-
dron 2008, 64, 9417–9422; c) P. R. Skaanderup, R. Madsen,
J. Org. Chem. 2003, 68, 2115–2122; d) F.-D. Boyer, I. Hanna,
Tetrahedron Lett. 2001, 42, 1275–1277.
R. N. Monrad, M. Fanefjord, F. G. Hansen, N. M. E. Jensen,
R. Madsen, Eur. J. Org. Chem. 2009, 396–402.
F. G. Hansen, E. Bundgaard, R. Madsen, J. Org. Chem. 2005,
70, 10139–10142.
A. E. Håkansson, A. Palmelund, H. Holm, R. Madsen, Chem.
Eur. J. 2006, 12, 3243–3253.
E. Dalcanale, F. Montanari, J. Org. Chem. 1986, 51, 567–569.
V. Snieckus, Chem. Rev. 1990, 90, 879–933.
R. S. C. Lopes, C. C. Lopes, C. H. Heathcock, Tetrahedron
Lett. 1992, 33, 6775–6778.
[13]
Supporting Information (see also the footnote on the first page of
this article): 1H and 13C NMR spectra for compounds 2–11, 14–18
and pancratistatin.
[14]
[15]
Acknowledgments
We thank the Danish National Research Foundation for financial
support.
[16]
[17]
[18]
[1] G. R. Pettit, V. Gaddamidi, G. M. Cragg, D. L. Herald, Y. Sa-
gawa, J. Chem. Soc., Chem. Commun. 1984, 1693–1694.
[2] a) G. R. Pettit, V. Gaddamidi, D. L. Herald, S. B. Singh, G. M.
Cragg, J. M. Schmidt, F. E. Boettner, M. Williams, Y. Sagawa,
J. Nat. Prod. 1986, 49, 995–1002; b) G. R. Pettit, V. Gaddamidi,
G. M. Cragg, J. Nat. Prod. 1984, 47, 1018–1020.
[3] G. R. Pettit, G. R. Pettit III, R. A. Backhaus, M. R. Boyd,
A. W. Meerow, J. Nat. Prod. 1993, 56, 1682–1687.
[4] B. Gabrielsen, T. P. Montath, J. W. Huggins, D. F. Kefauver,
G. R. Pettit, G. Groszek, M. Hollingshead, J. J. Kirsi, W. M.
[19]
[20]
[21]
[22]
D. Crich, V. Krishnamurthy, Tetrahedron 2006, 62, 6830–6840.
4672
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 4666–4673