5664
Z.-Y. Liu et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5661–5664
Table 2
membered heterocycles. Compounds 21 and 22 showed good cyto-
toxicity against the non-solid human CEM cell line, however they
were much less effective against a panel of solid human cancer cell
Cytotoxicity of synthesized compounds 21, 22 and CA-4 in human cancer cell lines
Cell linea
IC50
(l
M)
b
lines. In addition, the EC50 of compounds 21 and 22 is 3.89
lM and
21
3.3
4.5
7.4
4.4
20.3
3.4
22
CA-4
over 250 M, respectively, much less active than that of CA-4. The
l
Bel-7402
HepG2
SMMC-7721
MCF-7
SW-1990
HCT116
CEM
23.4
96.0
118.2
52.5
56.7
85.1
1.72
0.006
0.29
0.03
0.25
results showed that compounds with the B-ring possessing the
3,4,5-trimethoxy system and the A-ring with a 4-methoxy substi-
tution were more potent than their isomers with an interchange
of the substitution pattern of rings A and B.
0.006
0.002
0.24
0.12
References and notes
a
Cell lines: Bel-7402, HepG2, SMMC-7721, human liver cancer; MCF-7, human
breast cancer; SW-1990, human pancreatic cancer; HCT116, human colon cancer;
CEM, human leukemia.
IC50 values, concentration required to inhibit 50% of human tumor cells pro-
liferation, were determined as described in Ref. 5.
1. Wu, M.; Sun, Q.; Yang, C.; Chen, D.; Ding, J.; Chen, Y.; Lin, L.; Xie, Y. Bioorg. Med.
Chem. Lett. 2007, 17, 869.
b
2. Miglarese, M. R.; Carlson, R. O. Expert Opin. Invest. Drugs 2006, 15, 1411.
3. (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.;
Hamel, E. J. Med. Chem. 1991, 34, 2579; (b) Cushman, M.; Nagarathnam, D.;
Gopal, D.; He, H. M.; Lin, C. M.; Hamel, E. J. Med. Chem. 1992, 35, 2293.
4. Pellegrini, F.; Budman, D. R. Cancer Invest. 2005, 23, 264.
5. Hu, L.; Li, Z. R.; Li, Y.; Qu, J.; Ling, Y. H.; Jiang, J. D.; Boykin, D. W. J. Med. Chem.
2006, 49, 6273.
6. Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga,
Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Bioorg. Med. Chem. Lett. 1998, 8, 3153.
7. Sun, C. M.; Lin, L. G.; Yu, H. J.; Cheng, C. Y.; Tsai, Y. C.; Chu, C. W.; Din, Y. H.;
Chau, Y. P.; Don, M. J. Bioorg. Med. Chem. Lett. 2007, 17, 1078.
8. Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M.; Ahn, B. Z. Bioorg. Med.
Chem. Lett. 2001, 11, 3073.
9. Hu, L.; Li, Z. R.; Wang, Y. M.; Wu, Y.; Jiang, J. D.; Boykin, D. W. Bioorg. Med. Chem.
Lett. 2007, 17, 1193.
10. Hu, L.; Jiang, J. D.; Qu, J.; Li, Y.; Jin, J.; Li, Z. R.; Boykin, D. W. Bioorg. Med. Chem.
Lett. 2007, 17, 3613.
11. Bellina, F.; Cauteruccio, S.; Monti, S.; Rossi, R. Bioorg. Med. Chem. Lett. 2006, 16,
5757.
cell lines, whereas the activity against the non-solid human CEM
cell line was much better. Interestingly compound 21 showed two-
fold less cytotoxicity against the non-solid human CEM cell line
than compound 22. However, the cytotoxicity of compound 21
against the solid human cancer cell lines tested are 2–25-fold
stronger than compound 22. Unfortunately, the activity of both
21 and 22 was significantly poorer than that of CA-4.
To learn whether, or not, these analogues would interrupt
microtubule-tubulin dynamics and cause mitotic arrest, flow cyto-
metric analysis was done for the compounds 21 and 22 (Fig. 2)
using CA-4 as the positive control. Treatment of the HepG2 cells
with 21 for 20 h induced a dose-dependent increase of cells at
the G2/M and a simultaneous decrease of the S- and G1-phase
cells. The EC50 (drug concentration that causes 50% of the cancer
12. Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.;
Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-
Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697.
13. Shirai, R.; Takayama, H.; Nishikawa, A.; Koiso, Y.; Hashimoto, Y. Bioorg. Med.
Chem. Lett. 1998, 8, 1997.
cells arrested at G2/M) of compound 21 was 3.89
lM, 130-fold
14. Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M.; Ahn, B. Z. Bioorg. Med.
Chem. Lett. 2002, 12, 1955.
higher than that of CA-4 (EC50 <0.03 M). Treatment of the HepG2
l
cells with compound 22 under identical conditions caused no ar-
rest at the G2/M-phase. The EC50 of compound 22 was over
250 lM.
The results suggest that the reduced activity on mitotic arrest of
compound 21 as well as loss of activity for compound 22 appears
to contribute to the observed decline in cancericidal activity.
In summary, we have presented the synthesis and evaluation of
cytotoxicity of two series of compounds as CA-4 analogues with
thiazol-2(3H)-one and thiazol-2(3H)-imine as cis-restricted five-
15. Kim, Y.; Nam, N. H.; You, Y. J.; Ahn, B. Z. Bioorg. Med. Chem. Lett. 2002, 12, 719.
16. Tron, G. C.; Pagliai, F.; Del Grosso, E.; Genazzani, A. A.; Sorba, G. J. Med. Chem.
2005, 48, 3260.
17. Horton, W. J.; Thompson, G. J. Am. Chem. Soc. 1954, 76, 1909.
18. Bramley, S. E.; Dupplin, V.; Goberdhan, D. G. C.; Meakins, G. D. J. Chem. Soc.,
Perkin Trans. 1 1987, 3, 639.
19. Singh, H.; Singh, P.; Deep, K. Tetrahedron 1983, 39, 1655.
20. Westheimer, F. H.; Taguchi, K. J. Org. Chem. 1971, 36, 1570.
21. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089.
22. Cobas, A.; Guitian, E.; Castedo, L. J. Org. Chem. 1993, 58, 3113.
23. Bellamy, F. D.; Ou, K. Tetrahedron Lett. 1984, 25, 839.