R. Miri et al. / Bioorg. Med. Chem. 12 (2004) 2529–2536
2535
serial dilution in RPMI-1640 four concentrations (10,
References and notes
100, 500, 1000 lM) were made. DMSO, as negative
control, diluted with the same method. For positive
control, doxorubicin was mixed with PBS (phosphated
buffered saline) to make the similar concentrations.
MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetra-
zolium bromide], (Sigma, USA), was dissolved in PBS at
5 mg/mL and then filtered to remove any undissolved
particle. Each well of the microtiter plate was filled with
1–5 · 104 cells (depending on the cell line) in 90 lL cul-
ture medium. Then, 10 lL from the stock solutions of
the compounds, negative and positive controls was
added as triplicate to the wells to reach the final con-
centration of 1, 10, 50, and 100 lM. Three wells con-
taining only the same number of the cells left in each
plate. Plates were kept in a humified incubator for 48 h.
After the incubation period, MTT assay was carried out
by the procedure described by Jabbar et al.15
1. Grever, M. R.; Scheparize, S. A.; Chabner, B. A. Semin.
Oncol. 1992, 19, 623.
2. Myers, C. In Cancer Medicine; Jonathan, W. P., Jr. Ed.;
Williams and Wilkins: Maryland, USA, 1997; Vol. 1, pp
977–979.
3. Wall, M. E.; Wani McCook, C. E.; Palmer, K. H.;
McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1996, 88,
3888.
4. Dassonneville, L.; Wattez, N.; Baldeyrou, B.; Mahieu, C.;
Lansiaux, A.; Banaigs, B.; Bonnard, I.; Bailly, C. Biochem.
pharmacol. 2000, 60, 527.
5. (a) Suret, P.; Heron, J. F.; Couette, J. E.; Delozier, T.; Le
Taaler, J. Y. Cancer. Treat. Rep. 1982, 66, 1909; (b)
Rouese, J.; Le Chevallier, T.; Caille, P.; Mpndesir, J.;
Saucho-Garnier, H.; May-Levin, F.; Spielmann, M.;
De Jager, R.; Amiel, J. L. Cancer Treat. Rep. 1985, 69, 707.
6. Joseph, B.; Facompre, M.; Costa, H. D.; Routier, S.;
Merour, J.; Colsan, P.; Haussier, C.; Bailly, C. Bioorg.
Med. Chem. 2001, 9, 1533.
7. Antonini, I.; Cola, D.; Polucci, P.; Bontemps-Gracz, M.;
Borowski, E.; Martelli, S. J. Med. Chem. 1995, 38, 3282.
8. Peczynska-Czach, W.; Pognan, F.; Kaczmarek, L.; Bora-
tinski, J. J. Med. Chem. 1994, 37, 3503.
9. Bioo, J.; Cai-Guang, Y.; Wen-Nan, X.; Jun, W. Bioorg.
Med. Chem. 2001, 9, 1149.
10. Deady, L. W.; Desneves, J.; Kaye, A. J.; Tompson, M.;
Finlay, G. J.; Baguley, B. C.; Denny, W. A. Bioorg. Med.
Chem. 1999, 7, 2801.
11. Denny, W. A. Anti-Cancer Drug Des. 1989, 4, 241.
12. Denny, W. A. Drug Des. Delivery 1988, 3, 99.
13. Geita, L.; Vanag, G. Y. Latvijas PSR Zinalnu Akad.
Veslis. Kim. Ser. 1962, 2, 235 (Chem. Abstr., 59, 6355e).
14. Kaczmarek, L.; Peczynska-Czoch, W.; Osiadacz, J.; Mor-
darski, M.; Sokalski, W. A.; Boratynski, J.; Mar-
cinkowska, E.; Glazman-Kusnierczyk, H.; Radzikowski,
C. Bioorg. Med. Chem. 1999, 7, 2457.
3.4. Statistical analysis
Data were analyzed using SPSS software; one way
ANOVA and Duncan test. A confidence level of 6 0.05
was considered significant.
3.5. QSAR and molecular modeling
All molecular modelings was carried out using Hyper-
chem software (ver. 7). The 3D geometry of the com-
pounds was optimized by the AM1 Hamiltonian.
Molecular descriptors were computed by the Hyper-
chem and the substituent constants were obtained from
the literature. The MLR analysis was performed by the
SPSS software using the stepwise selection and elimi-
nation procedure for variable selection.
15. Jabbar, S. A. B.; Twentyman, P. R.; Watson, J. V. Br. J.
Cancer 1989, 60, 523.
16. Dziegielewski, J.; Slusarski, B.; Konitz, A.; Skladanowski,
A.; Konopa, J. Biochem. Pharmacol. 2002, 63, 1653.
17. Zozulya, V.; Blagoi, Yu.; Lober, G.; Voloshin, I.; Winter,
S.; Makitruk, V.; Shalamav, A. Biophys. Chem. 1997, 65, 55.
18. Han, G.; Yang, P. J. Inorg. Biochem. 2002, 91, 230.
19. Mikata, Y.; Yokoyama, M.; Mogami, K.; Okura, I.;
Chikira, M.; Yano, S. J. Inorg. Biochem. 1997, 67, 156.
20. Xiong, Z.; Yang, P. J. Mol. Struct. (Theochem) 2002, 582,
107.
21. Yang, P.; Han, D.; Xiong, Zh. J. Mol. Struct. (Theochem)
2001, 540, 211.
22. Osiadacz, J.; Majka, J.; Czarnecki, K.; Pecynska-Czoch,
W.; Zakrzewinska-Czerwinska, J.; Kaczmarek, L.; Sokal-
ski, W. A. Bioorg. Med. Chem. 2000, 8, 937.
For intercalation studies, double base pairs of DNA
were built by nucleic acid database of the Hyperchem
software and 3D geometry was optimized by AM1
method. For the determination of the structures of the
DNA-intercalator complexes, the procedure of the
Xiong and Yang was used.20 The intercalators were
brought close to the DNA double base pairs so that the
plane of diindenopyridine became parallel to the planes
of the nucleic acids. Then, the intercalators were allowed
to slide into the double base pairs of DNA using
geometry minimization procedure of Hyperchem soft-
ware. Energy minimization was performed using the
steepest-descent minimization algorithm in vacuum,
making use of the AMBER force field. Energy minimi-
zations were continued until the derivatives (RMS) were
23. Baldeyrou, B.; Tardy, Ch.; Bailly, Ch.; Colson, P.;
Houssier, C.; Chamantray, F.; Demeunynck, M. Eur. J.
Med. Chem. 2002, 37, 315.
24. Box, V. G. S.; Jean-Mary, F. J. Mol. Mod. 2001, 7, 334.
25. Baradly, P. G.; Cacciari, B.; Guiotto, A.; Romagnoli, R.;
Zaid, A. N.; Spalluto, G. IL Farmaco 1999, 549, 15.
26. Lyles, M. B.; Cameron, I. L. Interactions of the DNA
intercalator acridine orange, with itself, with caffeine, and
with stranded DNA. Biophys. Chem. 2002, 96, 53.
27. Liorente, B.; Leclerc, F.; Cedergren, R. Bioorg. Med.
Chem. 1996, 4, 61.
ꢀ
less than or equal to 0.01 kcal/mol A.
Acknowledgements
We are thankful to the Research Council of the Shiraz
University of Medical Sciences for financial support and
the Department of Chemistry of Persian Gulf University
for technical help.
28. Hemmateenejad, B.; Akhond, M.; Miri, R.; Shamsipur,
M. J. Chem. Inf. Comput. Sci. 2003, 43, 1328.
29. Hemmateenejad, B.; Miri, R.; Akhond, M.; Shamsipur,
M. Chemom. Intell. Lab. Syst. 2002, 64, 91.