Tominaga et al.
JOCArticle
obtained. The construction of host-guest complexes formed
between macrocycles and guest molecules can offer a good
foundation for understanding guest-induced structural mo-
tifs and molecular recognition, leading to the development of
unique chemical and physical properties.6 The macrocyclic
host molecules allow complexation with a wide variety of
ions, atoms, and small molecules through noncovalent inter-
actions such as hydrogen bonding, hydrophobic inter-
actions, aromatic stacking, and van der Waals interactions.7
In particular, macrocycles consisting of electron-rich aroma-
tic rings are able to form complexes with electron-deficient
guest molecules via charge-transfer interactions.8 Such
macrocycles have been used in the design of host-guest
inclusion compounds9 and diverse supramolecular architec-
tures such as catenanes,10 rotaxanes,11 folded aedamers,12
and macrocycle-tweezer complexes.13 However, the compo-
nents of such systems have generally involved substruc-
tures10-14 such as N-benzylbipyridinium units, pyromellitic
diimide parts, and alkoxynaphthalene moieties, and macro-
cycles consisting of alternative units are essential in the
design of solid state structures and functions based on
host-guest chemistries. Adamantane and its derivatives15
are a class of structurally unique compounds because they
are mechanically rigid and conformationally well-defined.
Adamantane derivatives as rigid, tetrahedrally symmetrical
compounds with two- or three-dimensional scaffolds have
been found in numerous applications in medicinal chemistry
and material sciences. However, the design and synthesis of
adamantane-based hosts and their applications in host-
guest chemistry remain largely unexplored. Recently, we
have demonstrated that the complexation of disubstitu-
ted adamantane consisting of 2,6-dimethoxyphenol as an
electron-rich unit with 1,3,5-trinitrobenzene16 as an electron-
poor guest assembles in the solid state to form a molecular
network through donor-acceptor interactions.17 We have
therefore applied this moiety as a structural fragment to
construct macrocyclic and cage frameworks, in which two or
three units of binary molecules based on adamantane, and
two units of trisubstituted adamantane are covalently linked
by a 1,6-dioxahexa-2,4-diyne spacer with relatively rigid and
directional characteristics. Acetylenic units are used as
bridges to provide rigidity to the cyclic framework and the
number of acetylenic units in the bridge and its connectivity
to the arene units define the size and shape of the cavity in the
macrocycle and cage.18 In this paper, we report the construc-
tion and structural analysis of two types of macrocycles and a
cryptand-like macrobicyclic cage, which encapsulate elec-
tron-poor guest molecule in a one-to-one complex via
charge-transfer interactions. Further, macrocycles and cage
including guest molecule showed the generation of unique
molecular networks in the crystal lattice.
€
(5) (a) Gerkensmeier, T.; Iwanek, W.; Agena, C.; Frohlich, R.; Kotila, S.;
€
Nather, C.; Mattay, J. Eur. J. Org. Chem. 1999, 2257–2262. (b) Atwood, J. L.;
Barbour, L. J.; Jerga, A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4837–4841.
(c) Gokel, G. W.; Barbour, L. J.; Ferdani, R.; Hu, J. Acc. Chem. Res. 2002,
35, 878–886. (d) Azumaya, I.; Okamoto, T.; Imabeppu, F.; Takayanagi, H.
Tetrahedron 2003, 59, 2325–2331. (e) Gokel, G. W.; Leevy, W. M.; Weber, M.
E. Chem. Rev. 2004, 104, 2723–2750. (f) Ishibashi, K.; Tsue, H.; Tokita, S.;
Matsui, K.; Takahashi, H.; Tamura, R. Org. Lett. 2006, 8, 5991–5994. (g)
Barrett, E. S.; Dale, T. J.; Rebek, J. Jr. J. Am. Chem. Soc. 2008, 130, 2344–
2350. (h) Tsue, H.; Matsui, K.; Ishibashi, K.; Takahashi, H.; Tokita, S.; Ono,
K.; Tamura, R. J. Org. Chem. 2008, 73, 7748–7755.
(6) (a) Dalgarno, S. J.; Tucker, S. A.; Bassil, D. B.; Atwood, J. L. Science
2005, 309, 2037–2039. (b) Dalgarno, S. J.; Cave, G. W. V.; Atwood, J. L.
Angew. Chem., Int. Ed. 2006, 45, 570–574. (c) Ananchenko, G. S.; Udachin,
K. A.; Dubes, A.; Ripmeester, J. A.; Perrier, T.; Coleman, A. W. Angew.
Chem., Int. Ed. 2006, 45, 1585–1588. (d) Hisaki, I.; Sakamoto, Y.;
Shigemitsu, H.; Tohnai, N.; Miyata, M. Cryst. Growth Des. 2009, 9, 414–
420. (e) Katagiri, K.; Kato, T.; Masu, H.; Tominaga, M.; Azumaya, I. Cryst.
Growth Des. 2009, 9, 1519–1524.
(7) (a) Chang, K.-J.; Moon, D.; Lah, M. S.; Jeong, K.-S. Angew. Chem.,
Int. Ed. 2005, 44, 7926–7929. (b) Lintuluoto, J. M.; Nakayama, K.; Setsune,
J. Chem. Commun. 2006, 3492–3494. (c) Kang, S.-W.; Gothard, C. M.;
Maitra, S.; Wahab, A.-T.; Nowick, J. S. J. Am. Chem. Soc. 2007, 129, 1486–
1487. (d) Emond, S. J.; Debroy, P.; Rathore, R. Org. Lett. 2008, 10, 389–392.
(e) Li, Y.; Flood, A. H. Angew. Chem., Int. Ed. 2008, 47, 2649–2652. (f)
€
Hoffmann, M.; Karnbratt, J.; Chang, M.-H.; Herz, L. M.; Albinsson, B.;
Anderson, H. L. Angew. Chem., Int. Ed. 2008, 47, 4993–4996. (g) Makha, M.;
Scott, J. L.; Strauss, C. R.; Sobolev, A. N.; Raston, C. L. Cryst. Growth Des.
2009, 9, 483–487.
(8) (a) Rastogi, R. P.; Bassi, P. S.; Chadha, L. S. J. Phys. Chem. 1963, 67,
2569–2573. (b) Rastogi, R. P.; Singh, N. B. J. Phys. Chem. 1966, 70, 3315–
3324. (c) Rastogi, R. P.; Singh, N. B. J. Phys. Chem. 1968, 72, 4446–4449. (d)
Paul, I. C.; Curtin, D. Y. Acc. Chem. Res. 1973, 6, 217–225. (e) Curtin, D. Y.;
Paul, I. C. Chem. Rev. 1981, 81, 525–541. (f) Imai, Y.; Tajima, N.; Sato, T.;
Kuroda, R. Org. Lett. 2006, 8, 2941–2944. (g) Imai, Y.; Kido, S.; Kamon, K.;
Kinuta, T.; Sato, T.; Tajima, N.; Kuroda, R.; Matsubara, Y. Org. Lett. 2007,
9, 5047–5050. (h) Imai, Y.; Kinuta, T.; Kamon, K.; Tajima, N.; Sato, T.;
Kuroda, R.; Matsubara, Y. Cryst. Growth Des. 2009, 9, 2393–2397.
(9) (a) Srinivasan, M.; Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G.
J. Org. Chem. 2001, 66, 4299–4303. (b) Nielsen, K. A.; Jeppesen, J. O.;
Levillain, E.; Thorup, N.; Becher, J. Org. Lett. 2002, 4, 4189–4192. (c)
Nielsen, K. A.; Cho, W.-S.; Jeppesen, J. O.; Lynch, V. M.; Becher, J.; Sessler,
J. L. J. Am. Chem. Soc. 2004, 126, 16296–16297. (d) Koshkakaryan, G.;
Klivansky, L. M.; Cao, D.; Snauko, M.; Teat, S. J.; Struppe, J. O.; Liu, Y.
J. Am. Chem. Soc. 2009, 131, 2078–2079.
(10) (a) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat,
S. J. Chem. Commun. 1997, 897–898. (b) Hamilton, D. G.; Feeder, N.; Prodi,
L.; Teat, S. J.; Clegg, W.; Sanders, J. K. M. J. Am. Chem. Soc. 1998, 130,
1096–1097. (c) Hamilton, D. G.; Feeder, N.; Teat, S. J.; Sanders, J. K. M.
New J. Chem. 1998, 22, 1019–1021. (d) Hansen, J. G.; Feeder, N.; Hamilton,
D. G.; Gunter, M. J.; Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449–
452.
(13) (a) Colquhoun, H. M.; Zhu, Z.; Williams, D. J. Org. Lett. 2003, 5,
4353–4356. (b) Colquhoun, H. M.; Zhu, Z.; Cardin, C. J.; Gan, Y. Chem.
Commun. 2004, 2650–2652. (c) Colquhoun, H. M.; Zhu, Z.; Cardin, C. J.;
Gan, Y.; Drew, M. G. B. J. Am. Chem. Soc. 2007, 129, 16163–16174.
(14) (a) Colquhoun, H. M.; Williams, D. J.; Zhu, Z. J. Am. Chem. Soc.
2002, 124, 13346–13347. (b) Zhou, Q.-Z.; Jiang, X.-K.; Shao, X.-B.; Chen,
G.-J.; Jia, M.-X.; Li, Z.-T. Org. Lett. 2003, 5, 1955–1958. (c) Vignon, S. A.;
Jarrosson, T.; Iijima, T.; Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J.
J. Am. Chem. Soc. 2004, 126, 9884–9885. (d) Iwanaga, T.; Nakamoto, R.;
Yasutake, M.; Takemura, H.; Sako, K.; Shinmyozu, T. Angew. Chem., Int.
Ed. 2006, 45, 3643–3647. (e) Koshkakaryan, G.; Klivansky, L. M.; Cao, D.;
Snauko, M.; Teat, S. J.; Struppe, J. O.; Liu, Y. J. Am. Chem. Soc. 2009, 131,
2078–2079.
(15) (a) Maison, W.; Frangioni, J. V.; Pannier, N. Org. Lett. 2004, 6, 4567–
4569. (b) Kitagawa,T.;Idomoto, Y.;Matsubara,H.;Hobara, D.;Kakiuchi, T.;
Okazaki, T.; Komatsu, K. J. Org. Chem. 2006, 71, 1362–1369. (c) Nasr, K.;
Pannier, N.; Frangioni, J. V.; Maison, W. J. Org. Chem. 2008, 73, 1056–1060.
(d) Pannier, N.; Maison, W. Eur. J. Org. Chem. 2008, 1278–1284.
(16) (a) Biradha, K.; Nangia, A.; Desiraju, G. R.; Carrell, C. J.; Carrell,
H. L. J. Mater. Chem. 1997, 7, 1111–1122. (b) Thallapally, P. K.; Katz, A. K.;
Carrell, H. L.; Desiraju, G. R. CrystEngComm 2003, 5, 87–92. (c) Jetti, R. K.
R.; Boese, R.; Thallapally, P. K.; Desiraju, G. R. Cryst. Growth Des. 2003, 3,
1033–1040. (d) Thallapally, P. K.; Jetti, R. K. R.; Katz, A. K.; Carrell, H. L.;
Singh, K.; Lahiri, K.; Kotha, S.; Boese, R.; Desiraju, G. R. Angew. Chem.,
Int. Ed. 2004, 43, 1149–1155.
(11) (a) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991,
113, 5131–5133. (b) Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F.
Nature 1994, 369, 133–137. (c) Amabilino, D. B.; Stoddart, J. F. Chem. Rev.
(17) Tominaga, M.; Katagiri, K.; Azymaya, I. Cryst. Growth Des. 2009, 9,
3692–3696.
ꢀ
1995, 95, 2725–2828. (d) Dichtel, W. R.; Miljanic, O. S.; Zhang, W.; Spruell,
J. M.; Patel, K.; Aprahamian, I.; Heath, J. R.; Stoddart, J. F. Acc. Chem. Res.
2008, 41, 1750–1761.
(18) (a) Tobe, Y.; Nagano, A.; Kawabata, K.; Sonora, M.; Naemura, K.
Org. Lett. 2000, 2, 3265–3268. (b) Baxter, P. N. W. J. Org. Chem. 2001, 66,
€
(12) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303–305. (b)
Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123, 7560–7563. (c)
Gabriel, G. J.; Iverson, B. L. J. Am. Chem. Soc. 2002, 124, 15174–15175. (d)
Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am. Chem. Soc. 2005, 127, 2637–
2640.
4170–4179. (c) Fuhrmann, G.; Debaerdemaeker, T.; Bauerle, P. Chem.
Commun. 2003, 948–949. (d) Werz, D. B.; Gleiter, R.; Rominger, F.
J. Org. Chem. 2004, 69, 2945–2952. (e) Kivala, M.; Mitzel, F.; Boudon, C.;
Gisselbrecht, J.-P.; Seiler, P.; Gross, M.; Diederich, F. Chem. Asian J. 2006,
1, 479–489.
J. Org. Chem. Vol. 74, No. 22, 2009 8755