cleavage of all three bonds of a single DAC by simply
changing the reaction conditions have until date been
missing. One of the common methods for their synthesis is
the intermolecular catalytic cyclopropanation of dihydrofu-
ran/pyran derivatives with diazoesters.5 However, the selec-
tivity of such intermolecular cyclopropanation reaction is
dependent on the pattern of substitution present in dihydro-
furan/pyrans.1 Herein, we describe a highly stereo- and
regioselective synthesis of cyclopropafuranones 1 employing
an intramolecular cyclopropanation of vinylogous carbonates
using copper catalyst. We further demonstrate that these
cyclopropafuranones are good precursors for a diverse array
of structural motifs present in many natural products via
regioselective cleavage of all three bonds of the cyclopropane
moiety.
the diazoketone 2 via a highly stereoselective intramo-
lecular [2 + 1] cycloaddition of the vinylogous carbonate
(Scheme 1).
Scheme 1
Preliminary studies examined the feasibility of the in-
tramolecular cyclopropanation of the vinylogous carbonate
on the diazoketone 2a (R ) Me) (Table 1). The requisite
We envisioned that the cyclopropafuranone 1 with two
different acceptors (CO and CO2Et) could be manipulated
chemoselectively, allowing for the regioselective cleavage
of each of the cyclopropane bonds and thus leading to a
diverse array of structural motifs. Vinylogous carbonates
have been extensively used as excellent radical acceptors
in the synthesis of cyclic ethers.6 In continuation of our
interest in studying the reactivity of vinylogous
carbonates,7a particularly under nonradical conditions7b
that still remain largely underdeveloped,8 we decided to
explore a new synthesis for the cyclopropafuranone 1 from
Table 1. Optimization of the Intramolecular Cyclopropanation
of Vinylogous Carbonate Using Diazoketone 2a (R ) Me)
equiv solvent temp (°C) yield (%)a b
,
entry
catalyst
1
2
3
4
5
6
7
8
9
none
Cu(OTf)2
0
C6H12
reflux
0
30
68
0
72
78
74
0
0.1 CH2Cl2
0.1 CH2Cl2
0.1 CH2Cl2
refluxc
refluxd
refluxc
refluxe
CuI/Cu (powder)
anhyd CuSO4
anhyd CuSO4
Cu(acac)2
Rh2(OAc)4
AgNO3
10
C6H12
0.1 CH2Cl2 refluxc
(3) Some recent examples: (a) Yadav, V. K.; Sriramurthy, V. Angew.
Chem. Int. Ed 2004, 43, 2669. (b) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf,
B. L. J. Am. Chem. Soc. 2007, 129, 9631. (c) Qi, X.; Ready, J. M. Angew.
Chem., Int. Ed. 2008, 47, 7068. (d) Parsons, A. T.; Johnson, J. S. J. Am.
Chem. Soc. 2009, 131, 3122. (e) Young, I. S.; Kerr, M. A. Angew. Chem.,
Int. Ed. 2003, 42, 3023. (f) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am.
Chem. Soc. 2005, 127, 5764. (g) Ivanova, O. A.; Budynina, E. M.; Grishin,
Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem., Int. Ed. 2008,
47, 1107.
0.1 CH2Cl2
0.1 CH2Cl2
0.1 CH2Cl2
rt
reflux
reflux
CuCl2
34
a Isolated yield. b In all cases, dr was determined on the crude reaction
mixtures by 1H NMR and was found to be g19:1. c No reaction at rt. d No
reaction with CuI alone. e Using two 100 W tungsten lamps.
(4) (a) Sugita, Y.; Kimura, C.; Hosoya, H.; Yamadoi, S.; Yokoe, I.
Tetrahedron Lett. 2001, 42, 1095. (b) Yu, M.; Pagenkopf, B. L. Org. Lett.
2003, 5, 4639. (c) Sridhar, P. R.; Ashalu, K. C.; Chandrasekaran, S. Org.
Lett. 2004, 6, 1777. (d) Lifchits, O.; Charette, A. Org. Lett. 2008, 10, 2809.
(e) Collum, D. B.; Still, W. C.; Mohamadi, F. J. Am. Chem. Soc. 1986,
108, 2094. (f) Zschiesche, R.; Grimm, E. L.; Reissig, H.-U. Angew. Chem.,
Int. Ed. Engl. 1986, 25, 1086. (g) Khan, F. A.; Czerwonka, R.; Reissig,
H.-U. Eur. J. Org. Chem. 2000, 3607, and references therein.
diazoketone 2a was readily prepared in 79% yield by
treatment of the acid 3a with oxalyl chloride to furnish the
corresponding acid chloride, followed by its reaction with
an ethereal solution of diazomethane.9 The thermal decom-
position of the diazoketone 2a in refluxing CH2Cl2 or
cyclohexane was not successful (Table 1, entry 1). Even
though reaction of diazoketone 2a in the presence of a
catalytic amount of Cu(OTf)2 in CH2Cl2 at room temperature
did not proceed at all, at reflux it gave cyclopropafuranone
1a in 30% yield (Table 1, entry 2).10 Anhydrous CuSO4 was
found to be a useful catalyst in refluxing (using two 100 W
tungsten lamps) cyclohexane, giving rise to cyclopropafura-
none 1a in very good yield and diastereoselectivity. However,
a huge excess of the catalyst was required as a result of the
insolubility of catalyst in cyclohexane. Even though CuI and
AgNO3 did not provide the cyclopropanated product (Table
1, entries 3 and 8), CuI/Cu powder and CuCl2 furnished the
(5) For some selected references, see: (a) Brady, T.; Kim, S. H.; Wen,
K.; Kim, C.; Theodorakis, E. A. Chem.sEur. J. 2005, 11, 7175. (b) Bohm,
C.; Reiser, O. Org. Lett. 2001, 3, 1315. (c) Hoberg, J. O.; Claffey, D. J.
Tetrahedron Lett. 1996, 37, 2533. (d) Kim, C.; Brady, T.; Kim, S. H.;
Theodorakis, E. A. Synth. Commun. 2004, 34, 1951. (e) Monn, J. A.; Valli,
J. M.; Massey, S. M.; Hansen, M. H.; Kress, T. J.; Wepsiec, J. P.; Harkness,
A. R.; Grutsch, J. L.; Wright, R. A.; Johnson, B. G.; Andis, S. L.; Kingston,
A.; Tomlinson, R.; Lewis, R.; Griffey, K. R.; Tizzano, J. P.; Schoepp, D. D.
J. Med. Chem. 1999, 42, 1027. (f) Wheeler, W. J.; O’Bannon, D. D.;
Kennedy, J. H.; Monn, J. A.; Tharp-Taylor, R. W.; Valli, M. J.; Kuo, F.
J. Labelled Compd. Radiopharm. 2005, 48, 605.
(6) (a) Lee, E.; Tae, J. S.; Lee, C.; Park, C. M. Tetrahedron Lett. 1993,
34, 4831. (b) Lee, E. Pure Appl. Chem. 2005, 77, 2073. (c) Hori, N.;
Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron Lett. 1999, 40, 2811.
(d) Evans, P. A.; Raina, S.; Ahsan, K. Chem. Commun. 2001, 2504. (e)
Evans, P. A.; Roseman, J. D. J. Org. Chem. 1996, 61, 2252. (f)
Leeuwenburgh, M. A.; Litjens, R. E. J. N.; Code´e, J. D. C.; Overkleeft,
H. S.; Van der Marel, G. A.; Van Boom, J. H. Org. Lett. 2000, 2, 1275. (g)
Sibi, M. P.; Patil, K.; Rheault, T. R. Eur. J. Org. Chem. 2004, 372. (h)
Chakraborty, T. K.; Samanta, R.; Ravikumar, K. Tetrahedron Lett. 2007,
48, 6389, and references therein.
(9) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; Wiley-Interscience:
New York, 1998. (b) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94, 1091.
(c) Doyle, M. P. Aldrichimica Acta 1996, 29, 3.
(7) (a) Gharpure, S. J.; Porwal, S. K. Synlett 2008, 242. (b) Gharpure,
S. J.; Reddy, S. R. B. Org. Lett. 2009, 11, 2519.
(8) Selected examples, see: (a) Hart, D. J.; Bennett, C. E. Org. Lett.
2003, 5, 1499. (b) Kwon, M. S.; Woo, S. K.; Na, S. W.; Lee, E. Angew.
Chem., Int. Ed. 2008, 47, 1733. (c) Kerr, M. S.; Rovis, T. J. Am. Chem.
Soc. 2004, 126, 8876. (d) McErlean, C. S. P.; Willis, A. C. Synlett 2009,
233, and references therein.
(10) It is pertinent to mention that although Cu(II) salts are screened as
catalyst precursors, the Cu(I) salts are the catalytically active species in
these type of reactions; see: (a) Moser, W. R. J. Am. Chem. Soc. 1969, 91,
1135. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
ReV. 2003, 103, 977.
Org. Lett., Vol. 11, No. 23, 2009
5467