C O M M U N I C A T I O N S
to open the door to the development of novel smart materials for
biomedical and nanotechnological applications.1,4
Acknowledgment. We thank NIH-SCoRE (Grant No.
2506GM08102) and NCRR-NIH (Grant No. P20 RR016470) for
financial support. J.E.B. thanks the Alfred P. Sloan Foundation
and NSF-IFN-EPSCoR (01A-0701525) for graduate fellowships.
We also thank Adriana Herrera (UPRM) for help with DLS
measurements; Dr. Maxime Guinel (UPRRP) for TEM images;
´
and Amalia Avila, Aura Collazo, and Luis Oquendo (UPRRP)
for technical assistance during the initial stages of this project.
Supporting Information Available: Detailed synthetic procedures,
characterization for all new compounds, experimental protocols, and
NMR data. This material is available free of charge via the Internet at
References
(1) (a) Yoshida, M.; Lahann, J. ACS Nano 2008, 2, 1101–1107. (b) Rodriguez-
Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Prog. Polym.
Sci. 2005, 30, 691–724. (c) de Las Heras Alarcon, C.; Pennadam, S.;
Alexander, C. Chem. Soc. ReV. 2005, 34, 276–285.
(2) Simmons, D. S.; Sanchez, I. C. Macromolecules 2008, 41, 5885–5889.
(3) (a) Kumar, A.; Srivastava, A.; Galaev, I.; Mattiasson, B. Prog. Polym. Sci.
2007, 32, 1205–1237. (b) Chen, G.; Hoffman, A. S. Nature 1995, 373,
49–52.
(4) Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2009, 5, 2513–2533.
(5) Urry, D. J. Phys. Chem. B 1997, 101, 11007–11028.
(6) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163–249.
(7) Gil, E. S.; Hudson, S. A. Prog. Polym. Sci. 2004, 29, 1173–1222.
(8) Urry, D. W.; Gowda, D. C.; Parker, T. M.; Luan, C. H.; Reid, M. C.; Harris,
C. M.; Pattanaik; Harris, R. D. Biopolymers 1992, 32, 1243–1250.
(9) Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D. AdV. Drug DeliVery
ReV. 2002, 54, 613–630.
Figure 4. Proposed mechanism of hierarchical assembly. (a) Isothermal
self-assembly of 2 to form 216. (b) Thermal induced assembly of 216. Upon
reaching the Tt, 216 forms a hydrated globule (ii) with a hydrodynamic
diameter of ∼1 µm. (iii) The entropically favorable dehydration of the
globule leads to a more compact nanoparticle with a diameter of ∼325
nm. (iV) Beyond 74 °C the assemblies melt, inducing the formation of ill-
defined aggregates of large polydispersity.
(10) Lao, U.; Kostal, J.; Mulchandani, A.; Chen, W. Nat. Protocols 2007, 2,
1263–1268.
(11) Rzaev, Z.; Dinc¸er, S. Prog. Polym. Sci. 2007, 32, 534–595.
(12) Lehn, J. M. Science 2002, 295, 2400–2403.
(13) Whitesides, G. M. Small 2005, 1, 172–179.
(14) (a) Gubala, V.; Betancourt, J. E.; Rivera, J. M. Org. Lett. 2004, 6, 4735–
4738. (b) Rivera-Sa´nchez, M. d. C.; Andu´jar-de-Sanctis, I.; Gar´ıa-Arriaga,
M.; Gubala, V.; Hobley, G.; Rivera, J. M. J. Am. Chem. Soc. 2009, 131,
10403–10405. (c) Gubala, V.; De Jesus, D.; Rivera, J. M. Tetrahedron
Lett. 2006, 47, 1413–1416. (d) Betancourt, J. E.; Mart´ın-Hidalgo, M.;
Gubala, V.; Rivera, J. M. J. Am. Chem. Soc. 2009, 131, 3186–3188.
(15) Garc´ıa-Arriaga, M.; Hobley, G.; Rivera, J. M. J. Am. Chem. Soc. 2008,
130, 10492–10493.
melting of the hexadecamers, which promotes the formation of
larger polydisperse aggregates (Figure 4b,iV).
The results presented in this article provide compelling evidence
that the self-assembly of nonpolymeric small molecules can lead
to the development of smart, discrete, and well-defined supramol-
ecules. Furthermore, reactions at the supramolecular level, in which
two similar subunits with different hydrophobicities are mixed,
enables the modulation of the LCST phenomenon. We are currently
evaluating the scope of this strategy by synthesizing a series of
derivatives of different hydrophobicities to fine-tune the Tt over a
wider range. Studies aimed at exploring the possibility of using
other stimuli, such as pH, to trigger the LCST phenomenon are
underway. The extension of the LCST phenomenon from the
macromolecular to the nonpolymeric supramolecular realm is likely
(16) Betancourt, J. E.; Rivera, J. M. Org. Lett. 2008, 10, 2287–2290.
(17) See Supporting Information.
(18) Schild, H. G.; Tirrell, D. A. J. Phys. Chem. 1990, 17, 163–249.
(19) Kisselev, A.; Manias, E. Fluid Phase Equilib. 2007, 261, 69–78.
(20) Urry, D. Biopolymers 1998, 47, 167–178.
(21) (a) Ferna´ndez-Trillo, F.; van Hest, J. C. M.; Thies, J. C.; Michon, T.;
Weberskirch, R.; Cameron, N. R. Chem. Commun. 2008, 2230–2232. (b)
Yu, Y.; Nakamura, D.; DeBoyace, K.; Neisius, A. W.; McGown, L. B. J.
Phys. Chem. B 2008, 112, 1130–1134.
(22) Schmitz, S.; Ritter, H. Angew. Chem., Int. Ed. 2005, 44, 5658–5661.
(23) Cohen, Y.; Avram, L.; Frish, L. Angew. Chem., Int. Ed. 2005, 44, 520–554.
JA9070927
9
16668 J. AM. CHEM. SOC. VOL. 131, NO. 46, 2009