LETTER
Regioselective O-Alkylation of Indazolinones Using CMPP
2675
References and Notes
O
O
(1) (a) Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34,
1492. (b) Aran, V. J.; Diez-Barra, E.; De la Hoz, A.;
Sanchez-Verdu, P. Heterocycles 1997, 45, 129.
(2) Eacho, P. I.; Foxworthy-Mason, P. S.; Lin, H.; Lopez, J.;
Moslor, M. K.; Richett, M. E. WO 2004093872, 2004.
(3) Gordon, D. W. Synlett 1998, 1065.
CMPP (2 equiv),
toluene, 100 °C, 20 h
+
N
ROH
N
N
N
H
R
1a
Scheme 3 N-Alkylation of 1a (step B)
(4) Arb, V. J.; Flores, M.; Muiioz, P.; Paez, J. A.; Sanchez-
Verdul, P.; Stud, M. Liebigs Ann. 1996, 683.
(5) Selwood, D. L.; Brummell, D. G.; Budworth, J.; Burtin,
G. E.; Campbell, R. O.; Chana, S. S.; Charles, I. G.;
Fernandez, P. A.; Glen, R. C.; Goggin, M. C.; Hobbs, A. J.;
Kling, M. R.; Liu, Q.; Madge, D. J.; Meillerais, S.; Powell,
K. L.; Reynolds, K.; Spacey, G. D.; Stables, J. N.; Tatlock,
M. A.; Wheeler, K. A.; Wishart, G.; Woo, C. J. Med. Chem.
2001, 44, 78.
heated. It also facilitates the use of nucleophiles (NuH) of
higher pKa allowing the second alkylation (on N1) to pro-
ceed. CMPP offers a simple method for the regioselective
O-alkylation of indazolinone. Selective N1- and N2-alky-
lations on indazolinone have previously been described;18
our methodology is therefore orthogonal to the previous
precedent.
(6) Mitsunobu, O.; Yamanda, M.; Mukaiyama, T. Bull. Chem.
Soc. Jpn. 1967, 40, 935.
(7) Tsunoda, T.; Otsuka, J.; Yamamita, Y.; Ito, S. Chem. Lett.
1994, 539.
General Method for O-Alkylation (Compound 1a)
(8) These reactions were not heated for safety reasons and this
is probably why unlike Selwood (ref. 5) we saw no reaction.
(9) A more detailed review of the mechanism can be found in:
McNulty, J.; Capretta, A.; Laritchev, V.; Dyck, J.;
Robertson, A. J. Angew. Chem. Int. Ed. 2003, 42, 4051.
(10) Sakamoto, I.; Kaku, H.; Tsunoda, T. Chem. Pharm. Bull.
2003, 51, 474.
Indazolinone (100 mg, 0.746 mmol), cyclopentanol (203 mL, 2.24
mmol) and CMPP (450 mg, 1.49 mmol) were taken up in toluene (2
mL) and stirred at 100 °C in a Reacti-Vial for 12 h. Reaction mix-
ture was then concentrated under vacuum and crude material puri-
fied by column chromatography [7 g silica, heptane (100%) through
to heptane–EtOAc (91:1)] to give a yellow oil/foam (72 mg, 48%).
(11) Bombrun, A.; Casi, G. Tetrahedron Lett. 2002, 43, 2187.
(12) (a) Uemoto, K.; Kawahito, A.; Matsushita, N.; Sakamoto, I.;
Kaku, H.; Tsunoda, T. Tetrahedron Lett. 2001, 42, 905.
(b) Tsunoda, T.; Uemoto, K.; Ohtani, T.; Kaku, H.; Ito, S.
Tetrahedron Lett. 1999, 40, 7359.
(13) Golantsov, N. E.; Karachava, A. V.; Yurovskaya, M. A.
Chem. Heterocycl. Compd. (N.Y., NY, U.S.) 2008, 44, 263.
(14) Tsunods, T.; Ozaki, F.; Ini, S. Tetrahedron Lett. 1994, 35,
5081.
Characterization Data
1H NMR (400 MHz, CDCl3): d = 1.66 (2 H, m), 1.85 (2 H, m), 2.00
(4 H, m), 5.31 (1 H, quin, J = 4.7 Hz), 7.07 (1 H, m), 7.27 (1 H, d,
J = 8.4 Hz), 7.35 (1 H, m), 7.69 (1 H, d, J = 8.0 Hz), 9.34 (1 H, br
s). 13C NMR (400 MHz, CDCl3): d = 24.2, 33.2, 81.5, 109.8, 113.6,
119.8, 120.3, 127.9, 142.7, 157.3. ESI-MS: m/z = 203 [M + H]+.
MS: m/z calcd for C12H14N2O [M + H]+: 203.1179; found:
203.1178.
(15) (a) Manivel, P.; Rai, N. P.; Jayashankara, V. P.;
Arunachalam, P. N. Tetrahedron Lett. 2007, 48, 2701.
(b) Tsunods, T.; Ozaki, F.; Ini, S. Tetrahedron Lett. 1994,
35, 5081. (c) Zong, K.; Groenendaal, L.; Reynolds, J. R.
Tetrahedron Lett. 2006, 47, 3521.
General Method for N-Alkylation (Compound 2b)
3-Cyclopentyloxy-1H-indazole (100 mg, 0.5 mmol), EtOH (86 mL,
1.5 mmol) and CMPP (298 mg, 1.0 mmol) were taken up in toluene
(2 mL) and stirred at 100 °C in a Reacti-Vial for 12 h. Reaction mix-
ture was then concentrated under vacuum and crude material puri-
fied by column chromatography [7 g silica, heptane–EtOAc (95:5)]
to give a yellow oil/foam (61 mg, 54%).
(16) ACD PKa predictor suggests (Figure 3)
OH
O
Characterization Data
N
N
N
1H NMR (400 MHz, CDCl3): d = 1.42 (3 H, t, J = 7.2 Hz), 1.67 (2
H, m), 1.87 (2 H, m), 2.00 (4 H, m), 4.24 (2 H, q, J = 7.2 Hz), 5.32
(1 H, quin, J = 4.5 Hz), 7.02 (1 H, m), 7.23 (1 H, d, J = 8.5 Hz), 7.34
(1 H, m), 7.66 (1 H, dt, J = 8.0, 0.9 Hz). 13C NMR (400 MHz,
CDCl3): d = 15.1, 24.2, 33.2, 43.5, 81.4, 108.7, 113.8, 118.9, 120.5,
127.1, 141.1, 155.5. ESI-MS: m/z = 231 [M + H]+. MS: m/z calcd
for C14H18N2O [M+H]+: 231.1508; found: 231.1492.
N
N
N
H
H
H
pKa ~8.91
pKa ~14.00
pKa ~13.33
Figure 3
(17) NMR and LC-MS data confirm that 6a and 7a are
diasteromers. Based on mechanism inversion in assumed,
but this has not been confirmed experimentally.
(18) Aran, V. J.; Flores, M.; Munoz, P.; Paez, J. A.; Sanchez-
Verdu, P.; Stud, M. Liebig. Ann. 1996, 683.
Acknowledgment
The authors would like to thank Paul Glossop and Dr Lyn Jones for
advice and helpful discussions. We also thank Denise Burring for
structural confirmation and Dr. David Blakemore and Dr. David
Fenwick for reviewing the manuscript.
Synlett 2009, No. 16, 2673–2675 © Thieme Stuttgart · New York