10.1002/anie.201812842
Angewandte Chemie International Edition
COMMUNICATION
Curr. Med. Chem. 2018, 25, 917; c) R. Quach, D. P. Furkerta, M. A.
Brimble, Org. Biomol. Chem. 2017, 15, 3098; d) P. Du, H. F. Zhou, G. S.
Shen, K. Zou, Chin. J. Org. Chem. 2015, 35, 1641; e) L. Cala, F. J.
Fañanás, F. Rodríguez, Org. Biomol. Chem. 2014, 12, 5324; f) R. Quach,
F. Chorley, M. A. Brimble, Org. Biomol. Chem. 2014, 12, 7423; g) M.
Wilsdorf, H.-U. Reissing, Angew. Chem. 2012, 124, 9624; Angew. Chem.
Int. Ed. 2012, 51, 9486; h) J. A. Palmes, A. Aponick, Synthesis 2012, 44,
3699; i) H. Wu, Y.-P. He, L.-Z. Gong, Org. Lett. 2013, 15, 460; j) L. Cala,
A. Mendoza, F. J. Fañanás, F. Rodríguez, Chem. Commun. 2013, 49,
2715; k) H. Audrain, J. Thorhauge, R. G. Hazell, K. A. Jørgensen, J. Org.
Chem. 2000, 65, 4487.
Int-C may also protonate to give the Int-B (8p). Nevertheless,
another reaction pathway involving initial [4+2] cycloaddition of
enol (generated from 2p in the presence of AuCl3) with 1a and
subsequent intramolecular cycloisomerizition could not be
completely ruled out (See SI for details).
In summary, we have successfully developed an asymmetric
tandem cycloisomerization/[4+2] cycloaddition of -alkynyl
ketones
and
,-unsaturated
-ketoesters
by
using
gold()/megnesium()/chiral N,N-dioxide catalytic system. A
broad range of enantioriched and multifunctionalized 6,6-
spiroketals with three stereocenters were obtained in moderate to
high yields with good to excellent enantioselectivities and
diastereoselectivities. A gold-containing alkene in situ generated
through gold/N,N-dioxide-mediated cycloisomerization of -
alkynyl ketone was proposed as the active intermediate. Further
studies on the reaction mechanism are underway.
[7]
[8]
[9]
a) K. J. Weissman, Nat. Chem. Biol. 2011, 7, 409−; b) J. Sperry, Z. E.
Wilson, D. C. K. Rathwell, M. A. Brimble, Nat. Prod. Rep. 2010, 27, 1117;
c) Y. K. Booth, W. Kitching, J. D. Voss, Nat. Prod. Rep. 2009, 26, 490; d)
S. B. Singh, D. L. Zink, B. Heimbach, O. Genilloud, A. Teran, K. C.
Silverman, R. B. Lingham, P. Felock, D. J. Hazuda, Org. Lett. 2002, 4,
1123; e) P.-L. Huang, S.-J. Won, S.-H. Day, C.-N. Lin, Helv. Chim. Acta
1999, 82, 1716; f) G. R. Pettit, Z. A. Cichacz, F. Gao, C. L. Herald, M. R.
Boyd, J. M. Schmidt, J. N. A. Hooper, J. Org. Chem. 1993, 58, 1302; g)
Y. Hirata, D. Uemura, Pure Appl. Chem. 1986, 58, 701.
a) X. Sala, E. J. G. Suárez, Z. Freixa, J. Benet-Buchholz, P. W. N. M.
van Leeuwen, Eur. J. Org. Chem. 2008, 6197; b) C. Jiménez-Rodríguez,
F. X. Roca, C. Bo, J. Benet-Buchholz, E. C. Escudero-Adán, Z. Freixa,
P. W. N. M. van Leeuwen, Dalton Trans. 2006, 268; c) Z. Freixa, P. C. J.
Kamer, M. Lutz, A. L. Spek, P. W. N. M. van Leeuwen, Angew. Chem.
2005, 117, 4459; Angew. Chem. Int. Ed. 2005, 44, 4385; d) Z. Freixa, M.
S. Beentjes, G. D. Batema, C. B. Dieleman, G. P. F. van Strijdonck, J. N.
H. Reek, P. C. J. Kamer, J. Fraanje, K. Goubitz, P. W. N. M. van Leeuwen,
Angew. Chem. 2003, 115, 1322; Angew. Chem. Int. Ed. 2003, 42, 1284.
a) Y. Y. Khomutnyk, A. J. Argꢀelles, G. A. Winschel, Z. Sun, P. M.
Zimmerman, P. Nagorny, J. Am. Chem. Soc. 2016, 138, 444; b) Z. Sun,
G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134,
8074; c) I. Čorić, B. List, Nature 2012, 483, 315.
Acknowledgements
We appreciate the National Natural Science Foundation of China
(Nos. 21890723, 21772127 and 21432006) for financial support.
Keywords: asymmetric catalysis • spiroketalization • bimetallic
catalysis • tandem reaction • gold-containing alkene
[1]
a) L. F. Chen, K. Chen, S. F. Zhu, Chem 2018, 4, 1208; b) A. L. S. Kumari,
A. S. Reddy, K. C. K. Swamy, Org. Biomol. Chem. 2016, 14, 6651; c) H.
H. Wang, Y. Y. Kuang, J. Wu, Asian J. Org. Chem. 2012, 1, 302; d) Y.
Yamamoto, I. D. Gridnev, N. T. Patil, T. Jin, Chem. Commun. 2009,
5075; e) S. M. A. Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269; f) N.
Asao, Synlett 2006, 1645.
[10] a) J. Y. Hamilton, S. L. Rꢁssler, E. M. Carreira, J. Am. Chem. Soc. 2017,
139, 8082; b) X. B. Wang, P. H. Guo, X. M. Wang, Z. Wang, K. L. Ding,
Adv. Synth. Catal. 2013, 355, 2900; c) X. M. Wang, Z. B. Han, Z. Wang,
K. L. Ding, Angew. Chem. 2012, 124, 960; Angew. Chem. Int. Ed. 2012,
51, 936; d) X. M. Wang, F. Y. Meng, Y. Wang, Z. B. Han, Y.-J. Chen, L.
Liu, Z. Wang, K. L. Ding, Angew. Chem. 2012, 124, 9410; Angew. Chem.
Int. Ed. 2012, 51, 9276.
[2]
[3]
a) J.-R. Chen, X.-Q. Hu, W.-J. Xiao, Angew. Chem. 2014, 126,
4118−4120; Angew. Chem. Int. Ed. 2014, 53, 4038; b) H. Kusama, N.
Iwasawa, Chem. Lett. 2006, 35, 1082.
a) T. T. Miao, Z.-Y. Tian, Y.-M. He, F. Chen, Y. Chen, Z.-X. Yu, Q.-H.
Fan, Angew. Chem. 2017, 129, 4199; Angew. Chem. Int. Ed. 2017, 56,
4135; b) M. Terada, F. Li, Y. Toda, Angew. Chem. 2014, 126, 239;
Angew. Chem. Int. Ed. 2014, 53, 235; c) H. Zhang, L. Zhu, S. Z. Wang,
Z.-J. Yao, J. Org. Chem. 2014, 79, 7063; d) K. Saito, Y. Kajiwara, T.
Akiyama, Angew. Chem. 2013, 125, 13526; Angew. Chem. Int. Ed. 2013,
52, 13284; e) S.-Y. Yu, H. Zhang, Y. Gao, L. Mo, S. Z. Wang, Z.-J. Yao,
J. Am. Chem. Soc. 2013, 135, 11402; f) K. Ishida, H. Kusama, N.
Iwasawa, J. Am. Chem. Soc. 2010, 132, 8842.
[11] For the reviews, see: a) X. H. Liu, S. X. Dong, L. L. Lin, X. M. Feng, Chin.
J. Chem. 2018, 36, 791; b) X. H. Liu, H. F. Zheng, Y. Xia, L. L. Lin, X. M.
Feng, Acc. Chem. Res. 2017, 50, 2621; c) X. H. Liu, L. L. Lin, X. M. Feng,
Org. Chem. Front. 2014, 1, 298; d) X. H. Liu, L. L. Lin, X. M. Feng, Acc.
Chem. Res. 2011, 44, 574.
[12] CCDC 1848811 (3f) contains the supplementary crystallographic data for
this paper (see SI). These data are provided free of charge by The
Cambridge Crystallographic Data Centre.
[4]
a) J.-K. Qiu, W.-J. Hao, G. G. Li, B. Jiang, Adv. Synth. Catal. 2018, 360,
1182; b) J. Sun, J.-K. Qiu, Y.-N. Wu, W.-J. Hao, C. Guo, G. G. Li, S.-J.
Tu, B. Jiang, Org. Lett. 2017, 19, 754; c) S. Liu, X.-C. Lan, K. Chen, W.-
J. Hao, G. G. Li, S.-J. Tu, B. Jiang, Org. Lett. 2017, 19, 3831; d) S. Liu,
K. Chen, X.-C. Lan, W.-J. Hao, G. G. Li, S.-J. Tu, B. Jiang, Chem.
Commun. 2017, 53, 10692; e) Y.-L. Zhu, A.-F. Wang, J.-Y. Du, B.-R.
Leng, S.-J. Tu, D.-C. Wang, P. Wei, W.-J. Hao, B. Jiang, Chem. Commun.
2017, 53, 6397; f) D. Wang, S. Liu, X.-C. Lan, A. Paniagua, W.-J. Hao,
G. G. Li, S.-J. Tu, B. Jiang, Adv. Synth. Catal. 2017, 359, 3186.
For selected reviews, see: a) F.-M. Zhang, S.-Y. Zhang, Y.-Q. Tu, Nat.
Prod. Rep. 2018, 35, 75; b) A. K. Franz, N. V. Hanhan, N. R. Ball-Jones,
ACS Catal. 2013, 3, 540; c) S. Favre, P. Vogel, S. Gerber-Lemaire,
Molecules 2008, 13, 2570; d) G. Zinzalla, L.-G. Milroy, S. V. Ley, Org.
Biomol. Chem. 2006, 4, 1977; e) J. E. Aho, P. M. Pihko, T. K. Rissa,
Chem. Rev. 2005, 105, 4406; f) F. Perron, K. F. Albizati, Chem. Rev.
1989, 89, 1617.
[13] a) B. W. Hu, J. Li, W. D. Cao, Q. C. Lin, J. Yang, L. L. Lin, X. H. Liu, X.
M. Feng, Adv. Synth. Catal. 2018, 360, 1; b) J. Li, L. L. Lin, B. W. Hu, P.
F. Zhou, T. Y. Huang, X. H. Liu, X. M. Feng, Angew. Chem. 2017, 129,
903; Angew. Chem. Int. Ed. 2017, 56, 885; c) J. Li, L. L. Lin, B. W. Hu,
X. J. Lian, G. Wang, X. H. Liu, X. M. Feng, Angew. Chem. 2016, 128,
6179; Angew. Chem. Int. Ed. 2016, 55, 6075.
[14] Using N-oxide compounds and AuCl3 as the catalysts could give desired
8p in 27−55% yields. However other bases, such as NEt3 and K2CO3,
could not work well (See SI, Table S9).
[15] N,N-Dioxide coordinates with Mg salt in a 1:1 ratio (CCDC 804337).
[16] a) L. J. Zhou, M. R. Zhang, W. B. Li, J. L. Zhang, Angew. Chem. 2014,
126, 6660; Angew. Chem. Int. Ed. 2014, 53, 6542; b) C.-L. Ji, Y. Pan, F.-
Z. Geng, W.-J. Hao, S.-J. Tu, B. Jiang, Org. Chem. Front, DOI:
10.1039/c8qo01277f.
[5]
[6]
[17] N,N-Dioxide was used as a base. See: a) B. Qin, X. H. Liu, J. Shi, K.
Zheng, H. T. Zhao, X. M. Feng, J. Org. Chem. 2007, 72, 2374; b) Y. H.
Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, Synlett 2005,
2445.
For selected reviews and samples, see: a) A. Ding, M. Meazza, H. Guo,
J. W. Yang, R. Rios, Chem. Soc. Rev. 2018, 47, 5946; b) A. Quintavalla,
This article is protected by copyright. All rights reserved.