Inorg. Chem. 2010, 49, 775–777 775
DOI: 10.1021/ic9023162
Lewis-Base-Stabilized Dichlorosilylene: A Two-Electron σ-Donor Ligand
€
Jianfeng Li, Sebastian Merkel, Julian Henn, Kathrin Meindl, Alexander Doring, Herbert W. Roesky,*
Rajendra S. Ghadwal, and Dietmar Stalke
€
€
€
Institut fu€r Anorganische Chemie, Universitat Gottingen, Tammannstrasse 4, 37077 Gottingen, Germany
Received November 23, 2009
The first structurally described cobalt(I) Lewis-base-stabilized
silylene complex [Co(CO)3{SiCl2(IPr)}2]þ[CoCl3(THF)]- [1; IPr =
1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene] was prepared by
applying the two-electron σ-donor ligand SiCl2(IPr) through coordi-
nation with Co2(CO)8. The bonding situation between ligand SiCl2-
(IPr) and the cobalt(I) metal center in [Co(CO)3{SiCl2(IPr)}2]þ of 1
was investigated by H NMR and IR spectroscopy, single-crystal
X-ray structural analysis, and density functional theoretical calcula-
tions.
transition metals has become an active area of research,5,6 even
though, except stable N-heterocyclic silylenes, other types of
silylene ligands were still extremely scarce until now.6
Dihalosilylenes as high-temperature molecules have at-
tracted academic and industrial interest for decades.7 How-
ever, because of the extreme instability and rapid poly-
merization of dihalosilylenes at ambient temperature,8,9 as
far as we know, the study of stable dihalosilylenes serving as
free ligands that coordinate to metals has not been reported
in the literature.10 Recently, we synthesized the first Lewis-
base-stabilized dichlorosilylene SiCl2(IPr) [IPr = 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene]11 and investigated the
1
An important part of the art of organometallic chemistry is
to select suitable ligands to influence the electronic and steric
properties of the complexes to favor the desired reactivity.
N-Heterocyclic carbenes (NHCs) as representatives of strong
two-electron σ-donor ligands have been successfully used in
a number of catalytic transformations.1 Apparently, small
changes in the ligand properties can entirely change the
chemistry. Silylenes, as heavier analogues of carbenes, are
divalent neutral silicon species that nominally have a singlet
ground state (1A1), with the lone pair of electrons as the highest
occupied molecular orbital and an empty p orbital as the
lowest unoccupied molecular orbital.2 Consequently, silylenes
are capable of behaving as σ-donor/π-acceptor ligands resem-
bling triorganophosphines (PR3). The important break-
through is the synthesis and structure of Ni(CO)2(NHSi)2
[NHSi = (tBuNCHdCHNtBu)Si] published in 1994,3 which
is derived from the coordination of two free NHSi ligands to a
nickel center instead of other indirect preparative methods.4
Since then, the incorporation of stable silylenes as ligands for
(5) (a) West, R.; Denk, M. Pure Appl. Chem. 1996, 68, 785–788.
(b) Feldman, J. D.; Mitchell, G. P.; Nolte, J.-O.; Tilley, T. D. J. Am. Chem. Soc.
1998, 120, 11184–11185. (c) Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F.;
Maciejewski, H. Organometallics 1998, 17, 5599–5601. (d) Petri, S. H. A.;
Eikenberg, D.; Neumann, B.; Stammler, H.-G.; Jutzi, P. Organometallics 1999, 18,
2615–2618. (e) Schmedake, T. A.; Haaf, M.; Paradise, B. J.; Powell, D.; West, R.
Organometallics 2000, 19, 3263–3265. (f) Dysard, J. M.; Tilley, T. D. Organome-
tallics 2000, 19, 4726–4732. (g) Schmedake, T. A.; Haaf, M.; Paradise, B. J.;
Millevolte, A. J.; Powell, D. R.; West, R. J. Organomet. Chem. 2001, 636, 17–25. (h)
Clendenning, S. B.; Gehrhus, B.; Hitchcock, P. B.; Moser, D. F.; Nixon, J. F.; West, R.
J. Chem. Soc., Dalton Trans. 2002, 484–490. (i) Amoroso, D.; Haaf, M.; Yap, G. P.
A.; West, R.; Fogg, D. E. Organometallics 2002, 21, 534–540. (j) Avent, A. G.;
Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F.; Maciejewski, H. J. Organomet. Chem.
2003, 686, 321–331. (k) Kong, L.; Zhang, J.; Song, H.; Cui, C. Dalton Trans. 2009,
€
5444–5446. (l) Meltzer, A.; Prasang, C.; Milsmann, C.; Driess, M. Angew. Chem.
2009, 121, 3216–3219. Angew. Chem., Int. Ed. 2009, 48, 3170-3173.
€
(6) (a) Meltzer, A.; Prasang, C.; Driess, M. J. Am. Chem. Soc. 2009, 131,
7232–7233. (b) Yang, W.; Fu, H.; Wang, H.; Chen, M.; Ding, Y.; Roesky, H. W.;
Jana, A. Inorg. Chem. 2009, 48, 5058–5060.
(7) Margrave, J. L.; Sharp, K. G.; Wilson, P. W. Top. Curr. Chem. 1972,
26, 1-35 and references cited therein.
(8) (a) Kana’an, A. S.; Margrave, J. L. Inorg. Chem. 1964, 3, 1037–1038.
€
(b) Teichmann, R.; Wolf, E. Z. Anorg. Allg. Chem. 1966, 347, 145–155. (c) Schafer,
H.; Bruderreck, H.; Morcher, B. Z. Anorg. Allg. Chem. 1967, 352, 122–137.
(9) (a) Timms, P. L.; Kent, R. A.; Ehlert, T. C.; Margrave, J. L. J. Am.
Chem. Soc. 1965, 87, 2824–2828. (b) Hengge, E.; Kovar, D. Angew. Chem.
1981, 93, 698–701. Angew. Chem., Int. Ed. 1981, 20, 678-678. (c) St€uger, H.;
Hengge, E. Monatsh. Chem. 1988, 119, 873–887. (d) Koe, J. R.; Powell, D. R.;
Buffy, J. J.; Hayase, S.; West, R. Angew. Chem. 1998, 110, 1514–1515. Angew.
Chem., Int. Ed. 1998, 37, 1441-1442.
*To whom correspondence should be addressed. E-mail: hroesky@
gwdg.de.
(1) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Coord.
Chem. Rev. 2009, 253, 687–703.
(2) Bharatam, P. V.; Moudgil, R.; Kaur, D. Organometallics 2002, 21,
3683–3690.
(3) Denk, M.; Hayashi, R. K.; West, R. J. Chem. Soc., Chem. Commun.
1994, 1, 33–34.
(10) For iron and chromium dichlorosilylene complexes derived from an
indirect strategy of salt elimination, see: Leis, C.; Wilkinson, D. L.;
(4) For the first examples of transition-metal silylene complexes derived
from an indirect salt elimination method and a triflate abstraction method,
see: (a) Straus, D. A.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem.
Soc. 1987, 109, 5872–5873. (b) Zybill, C.; M€uller, G. Angew. Chem. 1987, 99,
683–684. Angew. Chem., Int. Ed. Engl. 1987, 26, 669-670. For review, see:
(c) Zybill, C. E.; Liu, C. Synlett 1995, 7, 687–699. (d) Ogino, H. Chem. Rec.
2002, 2, 291–306. (e) Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res.
2007, 40, 712–719.
€
Handwerker, H.; Zybill, C.; Muller, G. Organometallics 1992, 11, 514–529.
(11) (a) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D.
Angew. Chem. 2009, 121, 5793–5796. Angew. Chem., Int. Ed. 2009, 48, 5683-
5686. At the same time, Filippou et al. reported a similar compound, SiBr2(IPr): (b)
Filippou, A. C.; Chernov, O.; Schnakenburg, G. Angew. Chem. 2009, 121, 5797–
5800. Angew. Chem., Int. Ed. 2009, 48, 5687-5690. (c) Ghadwal, R. S.; Roesky, H.
W.; Merkel, S.; Stalke, D. Chem. Eur. J. 2009, DOI: 10.1002/chem.200902930.
r
2009 American Chemical Society
Published on Web 12/22/2009
pubs.acs.org/IC