276
R. Jana et al. / Tetrahedron Letters 51 (2010) 273–276
Ph
Cu+
Ph
Ph
O
Cu
Cu+
O+
H+
O
H
O-H
O=O
MeO
H2O
A
MeO
MeO
C
B
Ph
H2O
Ph
Ph
O
O
O
O
O
O
O
O-H
MeO
H
MeO
H
D
MeO
E
F
Ph
O-H
Ph
O
O
MeO
MeO
H
G
H
Scheme 6. Proposed mechanism for the formation of naphthofuran ring.
compound forms naphthofuran ring with the elimination of water
molecule is shown in Scheme 6.
13C NMR (CDCl3, 100 MHz) d: 55.32, 100.21, 107,57, 112.53,
118.21, 122.46, 123.97, 124.58, 124.65 (2C), 124.82, 128.17,
128.77 (2C), 130.63, 131.46, 151.33, 155.33, 156.70.
In conclusion, we have developed a new methodology for the syn-
thesis of highly substituted furan ring by the addition of water and
unusual formation of naphthofuran ring from 3-(1-alkynyl)-2-
alkene-1-al derivatives at the same reaction condition. This reaction
is also helpful for synthesis of some furoquinone-based natural
products.
HRMS: calcd for C19H15O2 [M++H]: 275.1072; found 275.1073.
Acknowledgements
We thank CSIR, New Delhi, for the fellowships and we also
thank D.S.T. for providing funds for the project and creating
400 MHz NMR facility under the IRPHA programme.
2. Typical experimental procedure for the synthesis of furan ring
Compounds 2a (1 equiv), CuCl (10 mol %), H2O (10 equiv) and
DMF (2–3 mL) were placed in a two-necked round-bottomed
flask. Then the mixture was heated to 95–100 °C for 12–14 h.
After cooling, the reaction mixture was diluted with water, ex-
tracted with ether (20 mL Â 3) and dried over anhydrous Na2SO4.
The solvent was evaporated and the crude product was purified
by preparative thin layer chromatography (petroleum ether/ethyl
acetate 20:1).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Maier, M. In Organic Synthesis Highlights II; Waldmann, H., Ed.; VCH:
Weinheim, Germany, 1995; p 231; (b) Donnelly, D. M. X.; Meegan, M. J.. In
Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.;
Pergamon: New York, 1984; Vol. 4, p 657.
2. (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed.
2000, 39, 2285; (b) Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169; (c)
Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1991, 56, 960; (d) Fukuda, Y.; Shiragami,
H.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1991, 56, 5816; (e) Kel’in, A. V.;
Gevorgyan, V. J. Org. Chem. 2002, 67, 95; (f) Hou, X. L.; Yang, Z.; Wong, H. N. C.. In
Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon
Press: Oxford, UK, 2002; Vol. 14, p 139; (g) Cacchi, S. J. Organomet. Chem. 1999,
576, 42.
3. (a) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164; (b) Oh, C.
H.; Reddy, V. R.; Kim, A.; Rhim, C. Y. Tetrahedron Lett. 2006, 47, 5307; (c) Patil, N.
T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531; (d) Hashmi, A. S. K.;
Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285; (e)
Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Org. Lett. 2001, 3, 3769.
4. (a) Cheng, G.; Hu, Y. Chem. Commun. 2007, 3285; (b) Cheng, G.; Hu, Y. J. Org.
Chem. 2008, 73, 4732.
3. Spectral data of representative compounds
3.1. Compound 4i
1H NMR (CDCl3, 200 MHz) d: 2.72 (m, 2H), 2.91 (m, 2H), 3.85 (s,
3H), 6.87 (m, 2H), 7.39 (s, 1H), 7.43–7.56 (m, 3H), 7.94 (dd, 2H,
J = 8.4 Hz, J = 1.6 Hz), 8.60 (d, 1H, J = 8.4 Hz).
13C NMR (CDCl3, 50 MHz) d: 19.02, 30.61, 55.31, 111.83, 114.08,
121.00, 125.28, 128.10 (2C), 129.64 (2C), 130.34, 131.51, 131.99,
138.78, 139.46, 140.21, 145.92, 160.11, 184.35.
HRMS: calcd for C20H17O3 [M++H]: 305.1178; found 305.1128.
3.2. Compound 3i
5. (a) Liang, Y.; Xie, Y.-X.; Li, J.-H. J. Org. Chem. 2006, 71, 379; (b) Li, P.; Wang, L.; Li,
H. Tetrahedron 2005, 61, 8633; (c) Gholap, A. R.; Venkatesan, K.; Pasricha, R.;
Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. J. Org. Chem. 2005, 70, 4869; (d) Yi, C.;
Hua, R. J. Org. Chem. 2006, 71, 2535; (e) Gelman, D.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2003, 42, 5993; (f) Elangovan, A.; Wang, Y.-H.; Ho, T.-I. Org. Lett.
2003, 5, 1841.
White solid, mp 156–158 °C 1H NMR (CDCl3, 400 MHz); 3.95 (s,
3H), 7.28 (m, 2H), 7.35 (t, 1H, J = 7.6 Hz), 7.47 (m, 3H), 7.64 (q, 2H,
J = 8.8 Hz), 7.93 (d, 2H, J = 8 Hz), 8.07 (d, 1H, J = 8.8 Hz).