Acyl Phosphonates
A R T I C L E S
additional hydroxy-directing group switches the regioselectivity
completely from C-2 to C-4 addition (Table 3). The reaction
between (E)-dimethyl but-2-enoylphosphonate 1a and 2-(2-
chlorophenyl)-4-isobutyloxazol-5(4H)-one 2a afforded upon
quenching with DBU and MeOH the open quaternary amino
acid derivative 7 as the single product in 53% yield, albeit with
a low enantiomeric excess of 13% ee (entry 1). The change of
the regioselectivity suggests that the nature of the chiral
functional group of the catalyst is essential for the outcome of
the reaction. Several other chiral thioureas were evaluated as
catalysts of the regioreversal C-4 addition reaction; however,
only low to moderate regio- and enantioselectivities were
observed. The best results were obtained using catalyst 3a in
combination with organic acids as additives, thereby protonating
the basic quinuclidine and quinoline motifs.17 By only employ-
ing 10 mol % of TFA as cocatalyst, a 2:1 mixture of product
4a and 7 is formed (entry 2). Increasing the amount to 50 mol
% gave exclusively and directly the desired C-4 addition amino
acid product 7, albeit in racemic form (entry 3). A catalyst/acid
ratio of 1:2 proved to be the optimum condition, forming 7 in
excellent regioselectivity and moderate enantioselectivity (entry
4). Substituting TFA with other acids such as L-proline had no
influence on the stereochemical outcome of the reaction (entry
7), while temperature alterations lowered the enantioselectivity
considerably (entries 5, 6). The results demonstrate that the
nature of the chiral functional group in the catalyst is essential
for the regioselectivity of the addition reaction. Furthermore,
under standard conditions when the aromatic C-2 substituent
of the oxazolone is replaced with an alkylic chain, such as tBu,
a mixture of C-2 and C-4 addition products is formed with
moderate enantio- and diastereoselectivity, stating the impor-
tance of substitution pattern in control of regioselectivity.
continuance of our exploration of acyl phosphonates as a
powerful ester/amide surrogate in asymmetric H-bonding ca-
talysis, we continued the evaluation of other carbon-based
nucleophiles suitable for the catalytic system. The Friedel-Crafts
alkylation also represents one of the cornerstones in organic
chemistry. The robustness of the reaction and the diversity, with
which elemental starting materials can be converted, has driven
unrelenting developments in this field of research for more than
a century. During the past decade, a number of asymmetric
catalytic variants of the Friedel-Crafts alkylation have been
reported18 and enantioselective addition of aromatic compounds
to electron-poor alkenes has been realized for electrophiles such
as nitroalkenes, enals, enones, and unsaturated R-keto esters.
In 2003, Evans et al. reported a formal Friedel-Crafts alkylation
of esters and amides using acyl phosphonates and a chiral
scandium complex as electrophile and catalyst, respectively.3c
(11) For a first synthesis, see. (a) Vakulya, B.; Varga, S.; Csampai, A.;
Soo´s, T. Org. Lett. 2005, 7, 1967. For selected examples, see (b)
McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.
(c) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481.
(d) Vakulya, B.; Varga, S.; Soo´s, T. J. Org. Chem. 2008, 73, 3475.
(e) Elsner, P.; Jiang, H.; Nielsen, J. B.; Pasi, F.; Jørgensen, K. A.
Chem. Commun. 2008, 5827. (f) Biddle, M. M.; Lin, M.; Scheidt,
K. A. J. Am. Chem. Soc. 2007, 129, 3830. (g) Wang, J.; Li, H.; Zu,
L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc. 2006,
128, 12652. (h) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L.
J. Am. Chem. Soc. 2006, 128, 8156. (i) Giola, C.; Hauville, A.;
Bernardi, L.; Fini, F.; Ricci, A. Angew. Chem., Int. Ed. 2008, 47, 9236.
For other cinchona-alkaloid-based thiourea catalysts, see (j) Marcelli,
T.; van der Haas, R. N. S.; van Maarseveen, J. H.; Hiemstra, H. Angew.
Chem., Int. Ed. 2006, 45, 929. (k) Dickmeiss, G.; De Sio, V.; Udmark,
J.; Poulsen, T. B.; Marcos, V.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2009, 48, 6650.
(12) CCDC 752315 contains the supplementary crystallographic data.
conts/ retrieving.html [or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336-
033.
Table 3. C-4 Addition of
2-(2-Chlorophenyl)-4-isobutyloxazol-5(4H)-one 2a to Acyl
Phosphonate 1a
(13) Leyendecker, J.; Niewoehner, U.; Steglich, W. Tetrahedron Lett. 1983,
24, 2375.
(14) For recent review on the Stetter reaction, see Christmann, M. Angew.
Chem., Int. Ed. 2005, 44, 2632, and references herein.
(15) (a) Schulz, G.; Steglich, W. Chem. Ber. 1980, 113, 787. For other
literature-described methods, see. (b) Niewo¨hner, U.; Steglich, W.
Angew. Chem., Int. Ed. 1981, 20, 395.
(16) For previous studies using the aminoindanol-derived catalyst, see. (a)
Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem.,
Int. Ed. 2005, 44, 6576. (b) Lattanzi, A. Synlett 2007, 2106. (c) Herrera,
R. P.; Monge, D.; Mart´ın-Zamora, E.; Fernande´z, R.; Lassaletta, J. M.
Org. Lett. 2007, 9, 3303. See also ref 2c.
(17) For study on the basicity and nucleophilicity of the two nitrogen centers
in cinchona alkaloids, see. (a) Maida, M.; Horn, M.; Zipse, H.; Mayr,
H. J. Org. Chem. 2009, 74, 7157. (b) Baidya, M.; Kobayashi, S.;
Brotzel, F.; Schmidhammer, U.; Riedle, E.; Mayr, H. Angew. Chem.,
Int. Ed. 2007, 46, 6176.
entry
catalyst
additive (mol %)
T (°C)
4a:7b
ee (%)c
(18) For a recent review on asymmetric Friedel-Crafts reaction, see. (a)
Poulsen, T. B.; Jørgensen, K. A. Chem. ReV. 2008, 108, 2903, and
references therein. (b) Jørgensen, K. A. Synthesis 2003, 1117. (c)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int., Ed.
2004, 43, 550. (d) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-
Ronchi, A. Synlett 2005, 1199. (e) You, S.-L.; Cai, C.; Zeng, M. Chem.
Soc. ReV. 2009, 38, 2190. For recent examples of organocatalytic
Friedel-Crafts alkylations, see (f) Itoh, J.; Fuchibe, K.; Akiyama, T.
Angew. Chem., Int. Ed. 2008, 47, 4716. (g) Cai, C.; Zhao, Z.-A.; You,
S.-L. Angew. Chem., Int. Ed. 2009, 48, 7428. (h) Wang, Y.-Q.; Song,
J.; Hong, R.; Li, H.-M.; Li, D. J. Am. Chem. Soc. 2006, 128, 8156. (i)
Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292. (j) Paras,
N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370. (k)
Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.;
Melchiorre, P. Org. Lett. 2007, 9, 1403. For recent examples using
metal-catalysis, see (l) Trost, B. M.; Mu¨ller, C. J. Am. Chem. Soc.
2008, 130, 2438. (m) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garc´ıa,
J. M.; Linden, A. J. Am. Chem. Soc. 2005, 127, 4154. (n) Singh, P. K.;
Singh, V. K. Org. Lett. 2008, 10, 4121. (o) Liu, H.; Xu, J.; Du, D.-M.
Org. Lett. 2007, 9, 4725. (p) Blay, G.; Fernande´z, I.; Pedro, J. R.;
Vila, C. Org. Lett. 2007, 9, 2601.
1
2
3
4
5
6
7
3c
3a
3a
3a
3a
3a
3b
-
rt
4
4
4
-20
40
4
5:95 (53%)d
2:1
5:95
5:95 (60%)
5:95
5:95
13
nd
0
55
30
0
TFA (10)
TFA (50)
TFA (20)
TFA (20)
TFA (20)
L-proline (20)
5:95
-50
a Unless otherwise stated, 0.1 mmol of 1a, 0.3 mmol of 2a, 0.01
mmol of 3 and the appropriate additive were reacted at the given
temperature until completion of the reaction as monitored by TLC
(usually 4-48 h). b Determined by NMR of the crude reaction mixture.
No distereoselectivity of product 7 was achieved. In parentheses is the
given yield of isolated product. c Determined by chiral stationary phase
HPLC. d A single diastereomer of 7 was isolated.
Friedel-Crafts Alkylation. Encouraged by the results ob-
tained in the oxazolone addition to acyl phosphonates and in
9
J. AM. CHEM. SOC. VOL. 132, NO. 8, 2010 2779