J. Liu et al. / Spectrochimica Acta Part A 93 (2012) 245–249
249
Acknowledgments
This work was supported by the National Nature Science
Foundation of China (Nos. 20902073 and 21062017), the Natu-
ral Science Foundation of Gansu Province (No. 096RJZA116), and
the Fundamental Research Funds for the Central Universities” (No.
zyz2011062).
References
[1] A. Curley, V.A. Sedlak, E.F. Girling, R.E. Hawk, W.F. Barthel, P.E. Pierce, W.H.
Likosky, Science 2 (1971) 65–67.
[2] H.H. Harris, I.J. Pickering, G.N. George, Science 301 (2003), 1203-1203.
[3] P.B. Tchounwou, W.K. Ayensu, N. Ninashvili, D. Sutton, Environ. Toxicol. 18
(2003) 149–175.
[4] L. Campbell, D.G. Dixon, R.E. Hecky, J. Toxicol, Environ. Health Part B 6 (2003)
325–356.
Fig. 8. Color changes observed upon the addition of 5 equiv. of Hg2+ to the solutions
of sensor L1 (from right to left 1 × 10−4 M, 1 × 10−5 M, 1 × 10−6 M) in DMSO solutions.
(For interpretation of references to color in this figure legend, the reader is referred
to the web version of this article.)
[5] R.K. Zalups, Pharmacol. Rev. 52 (2000) 113–143.
[6] L.E. Strong, J. Chem. Educ. 49 (1972) 28–29.
[7] G. Aragay, J. Pons, A. Merkoc¸ i, Chem. Rev. 111 (2011) 3433–3458.
[8] E.M. Nolan, S.J. Lippard, Chem. Rev. 108 (2008) 3443–3480.
[9] D.T. Quang, J.S. Kim, Chem. Rev. 110 (2010) 6280–6301.
[10] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, E. Palomares, J.R. Dur-
rant, R. Vilar, M. Gratzel, M.K. Nazeeruddin, J. Am. Chem. Soc. 127 (2005)
[11] S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 128 (2006) 14150–14155.
[12] F. Song, S. Watanabe, P.E. Floreancig, K. Koide, J. Am. Chem. Soc. 130 (2008)
16460–16461.
[13] S. Ando, K. Koide, J. Am. Chem. Soc. 133 (2011) 2556–2566.
[14] M. Santra, B. Roy, K.H. Ahn, Org. Lett. 13 (2011) 3422–3425.
[15] Y. Yan, Y. Hu, G. Zhao, X. Kou, Dyes Pigments 79 (2008) 210–215.
[16] C. Chen, R.Y. Wang, L.Q. Guo, N.Y. Fu, H.J. Dong, Y.F. Yuan, Org. Lett. 13 (2011)
1162–1165.
An important feature of the sensor is its high selectivity toward
analyte over other competitive species. Variations of UV–vis spec-
tral and visual color changes of sensor L1 in DMSO solutions caused
by miscellaneous metal ions including Ca2+, Mg2+, Cd2+, Fe3+, Co2+
,
Ni2+, Cu2+, Zn2+, Pb2+, Ag+ and Cr3+ are recorded in Fig. 7. It is notice-
able that the miscellaneous competitive metal ions did not lead to
any significant spectral change: in the presence of these metal ions,
These results implied that the selectivity of sensor L1 toward Hg2+
was remarkable and sensor L1 can be used as a potential chemosen-
sor for Hg2+ ions.
[17] G.V. Ramesh, T.P. Radhakrishnan, ACS Appl. Mater. Interfaces
3 (2011)
The colorimetric and UV–vis limits of sensor L1 for Hg2+ cation
was also tested and presented in Fig. 8. The detection limit within
visual color changes is allowable to 5.0 × 10−6 M level of Hg2+ cation
in 1.0 × 10−6 M solution of sensor L1. While the detection limit
of the UV–vis changes calculated on the basis of 3 sB/S [35] is
1.0 × 10−7 M for Hg2+ cation, pointing to the high detection sen-
sitivity.
[18] M. Suresh, A.K. Mandal, S. Saha, E. Suresh, A. Mandoli, R.D. Liddo, P.P. Parnigotto,
A. Das, Org. Lett. 12 (2010) 5406–5409.
[19] P. Mahato, A. Ghosh, S. Saha, S. Mishra, S.K. Mishra, A. Das, Inorg. Chem. 49
(2010) 11485–11492.
[20] M. Suresh, S. Mishra, S.K. Mishra, E. Suresh, A.K. Mandal, A. Shrivastav, A. Das,
Org. Lett. 11 (2009) 2719–2956.
[21] A. Ghosh, B. Ganguly, A. Das, Inorg. Chem. 46 (2007) 9912–9918.
[22] S. Saha, P. Mahato, U.G. Reddy, E. Suresh, A. Chakrabarty, M. Baidya, S.K. Ghosh,
A. Das, Inorg. Chem. 51 (2012) 336–345.
[23] L.-Y. Lin, L.-F. Chang, S.-J. Jiang, J. Agric. Food Chem. 56 (2008) 6868–6872.
[24] S.P. Dolan, D.A. Nortrup, P.M. Bolger, S.G. Capar, J. Agric. Food Chem. 51 (2003)
1307–1312.
4. Conclusion
[25] I.S. Osborne, Science 19 (2004) 1733.
[26] L. Tang, F. Li, M. Liu, R. Nandhakumar, Spectrochim. Acta
1168–1172.
[27] M. Kadarkaraisamy, S. Thammavongkeo, P.N. Basa, G. Caple, A.G. Sykes, Org.
Lett. 13 (2011) 2364–2367.
[28] B. Valeur, J. Pouget, J. Bouson, M. Kaschke, N.P. Ernsting, J. Phys. Chem. 96 (1992)
6545–6549.
[29] Q. Lin, T.-B. Wei, Y.-M. Zhang, Phosphorus Sulfur and Silicon and the Related
Elements 182 (2007) 863–871.
[30] D.A. Jose, D.K. Kumar, P. Kar, S. Verma, A. Ghosh, B. Ganguly, H.N. Ghosh, A. Das,
Tetrahedron 63 (2007) 12007–12014.
[31] D.A. Jose, D.K. Kumar, B. Ganguly, A. Das, Org. Lett. 6 (2004) 3445–3448.
[32] M. Suresh, S.K. Mishra, S. Mishra, A. Das, Chem. Commun. 18 (2009)
2496–2498.
[33] M. Suresh, A. Ghosh, A. Das, Chem. Commun. 33 (2008) 3906–3908.
[34] A. Ghosh, D.A. Jose, A. Das, B. Ganguly, J. Mol. Model. 16 (2010) 1441–1448.
[35] Analytical Methods Committee, Recommendations for the definition, estima-
tion and use of the detection limit, Analyst 112 (1987) 199–204.
In conclusion, we designed and synthesized an easy-to-make
Hg2+ sensor L1 which bearing thiosemicarbazide moiety as recogni-
tion site and nitrophenyl moiety as signal group. Sensor L1 showed
colorimetric single selectivity for Hg2+ in DMSO and DMSO/H2O
binary solutions. Comparison with sensor L2 indicates that the
nitrophenyl moiety acted as a signal group and played a crucial role
in the process of colorimetric recognition. The researches of recog-
nition mechanism indicated that the sensor L1 recognize Hg2+ by
form a stable 1:1 L1-Hg2+ complex. The coexisting of other cations
could not interfere the Hg2+ recognition process, moreover, the
detection limit of the sensor L1 toward Hg2+ is 1.0 × 10−7 M, which
indicated that the sensor L1 could potentially be useful as a probe
for monitoring Hg2+ levels in physiological and environmental sys-
tems.
A 78 (2011)