10.1002/chem.201701300
Chemistry - A European Journal
FULL PAPER
P. Ramírez-López, L. Biedermannová, L. Rulíšek, L. Dufková, M.
Kotora, F. Zhu, P. Kočovský, J. Am. Chem. Soc. 2008, 130, 5341; d) H.
W. Roesky, M. Andruh, Coord. Chem. Rev. 2003, 236, 91.
50 times more intense upon protonation (neutral: ΦF = 0.005;
protonated: ΦF = 0.245). To our knowledge, these TAP N-oxides
are the first porphyrinoids that enable switching between
porphyrin-like optical properties and azaporphyrin-like optical
properties.
[3]
a) Z. Xu, H. Chen, Z. Wang, A. Ying, L. Zhang, J. Am. Chem. Soc.
2016, 138, 5515; b) T. Kojima, K. Nakayama, M. Sakaguchi, T. Ogura,
K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 17901; c) R.
Ito, N. Umezawa, T. Higuchi, J. Am. Chem. Soc. 2005, 127, 834.
A. Albini, S. Pietra, Heterocyclic N-Oxides, CRC Press, Florida, 1991.
a) J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, Chem. Rev.
2012, 112, 2642; b) S. Youssif, Arkivoc 2001, i, 242; c) A. R. Katritzky,
J. N. Lam, Heterocycles 1992, 33, 1011.
[4]
[5]
Conclusions
We have prepared TAP meso-N-oxides using mPCBA as an
oxidant to investigate the effects of N-oxidation on the properties
of extended heteroaromatic macrocycles. This is the first report
of substitution at the meso-nitrogen atoms of azaporphyrins. The
18π-aromaticity of these N-oxides is decreased compared with
that of the parent TAPs due to the contribution of the cross-
conjugated resonance structure. The N-oxides exhibit porphyrin-
like weak Q bands and intense Soret bands originating from
nearly degenerate pairs of HOMOs and LUMOs. Much weaker
fluorescence was observed while singlet oxygen quantum yields
were greatly enhanced upon N-oxidation. The oxygen moiety
can be easily removed by photoreduction under near-IR light
irradiation, and the N-oxide itself works as a photosensitizer for
oxidation reactions. In addition, the porphyrin-like optical
properties are converted to azaporphyrin-like optical properties
upon protonation, enabling fluorescence switching in the red
region. These studies indicate that the classical chemistry of
pyridine N-oxides can provide clues for improving the
physicochemical properties of heteroaromatic macrocycles.
Further studies on N-oxidation of other extended conjugated
dyes and work to utilize TAP N-oxides as near-IR responsive
photo-oxidizing agents are in progress.
[6]
a) J. Fernández-Ariza, R. M. Krick Calderón, M. S. Rodríguez-Morgade,
D. M. Guldi, T. Torres, J. Am. Chem. Soc. 2016, 138, 12963; b) Y.
Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E.
Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim,
J. F. Lovell, Nat. Nanotechnol. 2014, 9, 631; c) A. Varotto, C.-Y. Nam, I.
Radivojevic, J. P. C. Tomé, J. A. S. Cavaleiro, C. T. Black, C. M. Drain,
J. Am. Chem. Soc. 2010, 132, 2552.
[7]
N-Oxide formation at the internal pyrrolic nitrogen of porphyrins has
been known for many years. a) S. Banerjee, M. Zeller, C. Brückner, J.
Org. Chem. 2009, 74, 4283; b) A. L. Balch, Y. W. Chan, M. Olmstead,
M. W. Renner, J. Am. Chem. Soc. 1985, 107, 2393; c) L. E. Andrews, R.
Bonnett, R. J. Ridge, E. H. Appelman, J. Chem. Soc., Perkin Trans. 1
1983, 103; d) R. Bonnett, R. J. Ridge, E. H. Appelman, J. Chem. Soc.
Chem. Commun. 1978, 310.
[8]
[9]
T. Okujima, G. Jin, S. Otsubo, S. Aramaki, N. Ono, H. Yamada, H. Uno,
J. Porphyrins Phthalocyanines 2011, 15, 697.
R. P. Linstead, M. Whalley, J. Chem. Soc. 1952, 4839.
[10] a) J. F. Chiang, J. J. Song, J. Mol. Struct. 1982, 96, 151; b) D. Ülkü, B.
P. Huddle, J. C. Morrow, Acta Crystallogr. Sect. B: Struct. Sci. 1971,
B27, 432.
[11] C. L. Wild, M. Spahis, R. D. Blankenship, J. W. Rogers, R. J. Williams,
Polyhedron 1983, 2, 379.
[12] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E.
Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
[13] J. Mack, M. J. Stillman, N. Kobayashi, Coord. Chem. Rev. 2007, 251,
429.
[14] a) P. A. Stuzhin, Yu. B. Ivanova, I. S. Migalova, V. B. Sheinin, Russ. J.
Gen. Chem. 2005, 75, 1300; b) P. A. Stuzhin, O. G. Khelevina, B. D.
Berezin in Phthalocyanine. Properties and Applications, Vol. 4 (Eds.: C.
C. Leznoff, A. B. P. Lever), VCH Publications, New York, 1996, Chapter
2, pp. 19–78; c) P. A. Bernstein, A. B. P. Lever, Inorg. Chim. Acta. 1992,
198-200, 543.
Acknowledgements
This work was partly supported by JSPS KAKENHI Scientific
Research (S) (grant No. 24229001 (to M.U.)) as well as the
Research Foundation for Opt-Science and Technology, Naito
Foundation, and The Asahi Glass Foundation (to M.U.). N.T. is
grateful for funding from the Graduate Program for Leaders in
Life Innovation (GPLLI) and JSPS Research Fellowships for
Young Scientists. RIKEN Integrated Cluster of Clusters (RICC)
and HOKUSAI GreatWave (HOKUSAI-GW) provided the
computer resources for the DFT calculations.
[15] J. Mack, Y. Asano, N. Kobayashi, M. J. Stillman, J. Am. Chem. Soc.
2005, 127, 17697.
[16] K. Rurack, M. Spieles, Anal. Chem. 2011, 83, 1232.
[17] A. Ogunsipe, D. Maree, T. Nyokong, J. Mol. Struct. 2003, 650, 131.
[18] K. Ishii, N. Kobayashi in The Porphyrin Handbook, Vol. 16 (Eds.: K. M.
Kadish, K. M. Smith, R. Guilard), Academic Press, New York, 2003,
Chapter 102, pp. 1–42.
[19] M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351.
[20] M. Gouterman, J. Mol. Spectrosc. 1961, 6, 138.
[21] H. Miwa, E. A. Makarova, K. Ishii, E. A. Luk’yanets, N. Kobayashi,
Chem. Eur. J. 2002, 8, 1082.
Keywords: conjugation • fluorescence • N-oxides •
porphyrinoids • singlet oxygen
[22] Heteroaromatic N-oxides increase oxidizing ability under UV irradiation.
a) M. Sako, S. Ohara, K. Shimada, K. Hirota, Y. Maki, J. Chem. Soc.,
Perkin Trans 1 1990, 863; b) A. Albini, M. Alpegiani, Chem. Rev. 1984,
84, 43.
[1]
[2]
a) Y. Pan, P. Li, S. Xie, Y. Tao, D. Chen, M. Dai, H. Hao, L. Huang, Y.
Wang, L. Wang, Z. Liu, Z. Yuan, Bioorg. Med. Chem. Lett. 2016, 26,
4146; b) A. M. Mfuh, O. V. Larionov, Curr. Med. Chem. 2015, 22, 2819;
c) S. Cretton, L. Breant, L. Pourrez, C. Ambuehl, L. Marcourt, S. N.
Ebrahimi, M. Hamburger, R. Perozzo, S. Karimou, M. Kaiser, M.
Cuendet, P. Christen, J. Nat. Prod. 2014, 77, 2304.
[23] a) S. M. Bonesi, S. Protti, A. Albini, J. Org. Chem. 2016, 81, 11678.; b)
K. Ohkubo, T. Nanjo, S. Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006, 79,
1489; c) S. Yasui, S. Tojo, T. Majima, J. Org. Chem. 2005, 70, 1276.
[24] E. D. Lorance, W. H. Kramer, I. R. Gould, J. Am. Chem. Soc. 2002, 124,
15225.
a) X. Chi, H. Zhang, G. I. Vargas-Zúñiga, G. M. Peters, J. L. Sessler, J.
Am. Chem. Soc. 2016, 138, 5829; b) J. J. Henkelis, S. A. Barnett, L. P.
Harding, M. J. Hardie, Inorg. Chem. 2012, 51, 10657; c) A. V. Malkov,
This article is protected by copyright. All rights reserved.