92
A. Tyagi, A. Penzkofer / Chemical Physics 367 (2010) 83–92
[18] F.M. Cabrerizo, G. Petroselli, C. Lorente, A.L. Capparelli, A.H. Thomas, A.M.
Braun, E. Oliveros, Photochem. Photobiol. 81 (2005) 1234.
[19] C. Lorente, A.L. Capparelli, A.H. Thomas, A.M. Braun, E. Oliveros, Photochem.
Photobiol. Sci. 3 (2004) 167.
[20] K. Hirakawa, H. Suzuki, S. Oikawa, S. Kawanishi, Arch. Biochem. Biophys. 410
(2003) 261.
resulted from the weak S0–S1 absorption strength (long radiative
lifetime and normal rate of non-radiative decay).
In aqueous solution at pH 6 (neutral form of FA) the fluores-
cence was found to be strongly quenched by photo-induced in-
tra-molecular electron transfer with subsequent non-radiative
charge recombination. The fluorescence behaviour was determined
by direct locally-excited-state emission, delayed locally-excited-
state emission, and charge-separated-state emission.
In aqueous 0.1 M KOH and 4 M KOH solution (anionic form of
FA) the fluorescence quenching behaved similar to the neutral FA
situation. The dynamics was again determined by photo-induced
intra-molecular electron transfer.
The Kasha–Vavilov’s rule of excitation wavelength independent
constant S1–S0 fluorescence emission due to ultrafast higher ex-
cited-state to first excited-state internal conversion was not
obeyed because other relaxation paths from higher excited poten-
tial energy surfaces like conical intersection funnels exist.
FA in 4 M KOH could be dehydrated under aerobe conditions to
9,10-dehydro-FA at elevated temperatures. The photo-dynamics of
DHFA turned out to be determined by twisted intra-molecular
charge transfer and photo-isomerisation.
The low fluorescence quantum yield of FA may have advantages
in its biological vitamin application by avoiding photo-damage due
to the short excited state lifetime. In this respect the situation is
similar to the DNA bases which have very short excited state life-
times due to conical intersection decay paths [63–65].
[21] A.H. Thomas, G. Suárez, F.M. Cabrerizo, R. Martino, A.I. Capparelli, J.
Photochem. Photobiol. A: Chem. 135 (2000) 147.
[22] O.H. Lowry, O.A. Bessey, E.J. Crawford, L. Biol. Chem. 180 (1949) 389.
[23] M.J. Akhtar, M.A. Khan, I. Ahmad, J. Pharm-Biomed. Anal. 25 (1999) 269.
[24] M.J. Akhtar, M.A. Khan, I. Ahmad, J. Pharm-Biomed. Anal. 31 (2003) 579.
[25] M.K. Off, A.E. Steindal, A.C. Porojnicu, A. Juzeniene, A. Vorobey, A. Johnsson, J.
Moan, J. Photochem. Photobiol. B: Biol. 80 (2005) 47.
[26] B.S. Patro, S. Adhikari, T. Mukherjee, S. Chattopadhyay, Bioorg. Med. Chem.
Lett. 15 (2005) 67.
[27] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 87th ed., Taylor &
Francis Group, London, 2006.
[28] S.I. Vavilov, Phil. Mag. 43 (1922) 345.
[29] S.I. Vavilov, Z. Phys. 42 (1927) 311.
[30] G.N. Lewis, M. Kasha, J. Am. Chem. Soc. 66 (1944) 2100.
[31] A. Penzkofer, J. Shirdel, P. Zirak, H. Breitkreuz, E. Wolf, Chem. Phys. 342 (2007)
55.
[32] R. Rusakowicz, A.C. Testa, J. Phys. Chem. 72 (1968) 2680.
[33] D.F. Eaton, EPA Newslett. 28 (1986) 21.
[34] M. Mardelli, J. Olmsted III, J. Photochem. 7 (1977) 277.
[35] C. Birkmann, A. Penzkofer, T. Tsuboi, Appl. Phys. B 77 (2003) 625.
[36] W. Scheidler, A. Penzkofer, Opt. Commun. 80 (1990) 127.
[37] V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear
Optical Crystals, Springer Verlag, Berlin, 1999.
[38] P. Zirak, A. Penzkofer, T. Mathes, P. Hegemann, Chem. Phys. 358 (2009)
111.
[39] A. Penzkofer, A. Laubereau, W. Kaiser, Prog. Quant. Electr. 6 (1979) 55.
[40] B. Meier, A. Penzkofer, Appl. Phys. B 53 (1991) 65.
[41] M. Klessinger, J. Michl, Excited States and Photochemistry of Organic
Molecules, VCH Publishers, New York, 1995.
[42] K.-Y. Chen, C.-C. Hsieh, Y.-M. Cheng, C.-H. Lai, P.-T. Chou, T.J. Chow, J. Phys.
Chem. A 110 (2006) 12136.
Acknowledgements
[43] L. Zhang, H.N. Patel, J.W. Lappe, R.M. Wachter, J. Am. Chem. Soc. 128 (2006)
4766.
[44] A.M. Halpern, B.R. Ramachandran, Photochem. Photobiol. 62 (1995) 686.
[45] Sh.D.M. Islam, T. Susdorf, A. Penzkofer, P. Hegemann, Chem. Phys. 295 (2003)
137.
The authors thank the Deutsche Forschungsgemeinschaft (DFG)
for support to the Research Group FOR 526 ‘‘Sensory Blue Light
Receptors” and to the Graduate College GK640/3 ‘‘Sensory Photore-
ceptors in Natural and Artificial Systems”. A.P. is grateful to Prof.
F.J. Gießibl and Prof. J. Repp for their kind hospitality.
[46] B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH,
Weinheim, 2002.
[47] M. Kasha, in: W.A. Glass, M.N. Varma (Eds.), Physical and Chemical
Mechanisms in Molecular Radiation Biology, Plenum Press, New York, p. 231.
[48] A. Müller, H. Ratajczak, W. Junge, E. Diemann (Eds.), Electron and Proton
Transfer in Chemistry and Biology, Elsevier, Amsterdam, 1992.
[49] G.R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford
University Press, New York, 1986.
[50] J. Schmidt, A. Penzkofer, J. Chem. Phys. 91 (1989) 1403.
[51] M.G. Evans, M. Polanyi, Trans. Faraday Soc. 31 (1935) 875.
[52] H. Eyring, J. Chem. Phys. 3 (1935) 107.
[53] N.J. Turro, V. Ramamurthy, J.C. Scaiano, Principles of Molecular
Photochemistry. An Introduction, University Science Books, Sausalito, CA,
2009.
[54] S.J. Strickler, R.A. Berg, J. Chem. Phys. 37 (1962) 814.
[55] J.B. Birks, D.J. Dyson, Proc. R. Soc. Lond. Ser. A 275 (1963) 135.
[56] A.V. Deshpande, A. Beidoun, A. Penzkofer, G. Wagenblast, Chem. Phys. 142
(1990) 123.
References
[1] R.L. Blakley, The Biochemistry of Folic Acid and Related Pteridines, American
Elsevier, New York, 1969.
[2] H.K. Mitchell, E.E. Snell, R.J. Williams, J. Am. Chem. Soc. 63 (1941) 2284.
[3] A. White, P. Handler, E.L. Smith, Principles of Biochemistry, fourth ed.,
McGraw-Hill, New York, 1968 (Chapter 49).
[4] J.B. Mason, L. Levesque, Oncology 10 (1996) 1727.
[5] Y.-I. Kim, J. Nutr. Biochem. 10 (1999) 66.
[6] R. Joshi, S. Adhikari, B.S. Patro, S. Chattopadhyay, T. Mukherjee, Free Rad. Biol.
Med. 30 (2001) 1390.
[7] J.C. Rabinowitz, in: P.D. Boyer, H. Lardy, K. Myrbäch (Eds.), The Enzymes,
second ed., vol. 2, Academic Press, New York, 1960.
[8] R.L. Blakley, S.J. Benkovic (Eds.), Folates and Pterins, vol. 1. Chemistry and
Biochemistry of Folates, John Wiley and Sons, New York, 1984.
[9] M. Poe, J. Biol. Chem. 252 (1977) 3724.
[10] D. Voet, J.G. Voet, Biochemistry, third ed., Wiley, USA, 2004.
[11] B.L. O’Dell, J.M. Vandenbelt, E.S. Bloom, J.J. Pfiffner, J. Am. Chem. Soc. 69 (1947)
250.
[12] A. Pohland, E.A. Flynn, E.H. Jones, W. Shive, J. Am. Chem. Soc. 73 (1951) 3247.
[13] H.M. Rauen, W. Stamm, K.H. Kimbel, Z. Physiol. Chem. 289 (1952) 80.
[14] B.E. Wright, M.L. Anderson, E.C. Herman, J. Biol. Chem. 230 (1958) 271.
[15] K. Uyeda, J.C. Rabinowitz, Anal. Biochem. 6 (1963) 100.
[16] C. Lorente, A.H. Thomas, Acc. Chem. Res. 39 (2006) 395.
[17] A.H. Thomas, C. Lorente, A.L. Capparelli, M.R. Pokhrel, A.M. Braun, E. Oliveros,
Photochem. Photobiol. Sci. 1 (2002) 421.
[57] R. de Levie, J. Chem. Edu. 80 (2003) 146.
[58] R.M.A. Wandruszka, R.J. Hurtubise, Anal. Chim. Acta 93 (1977) 331.
[59] R.T. Parker, R.S. Freelander, E.M. Schulman, R.B. Dunlap, Anal. Chem. 51 (1979)
1921.
[60] F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. 20 (1996) 321.
[61] D.R. Yarkony, Rev. Mod. Phys. 68 (1996) 985.
[62] Z.R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103 (2003) 3899.
[63] M. Daniels, W. Hauswirth, Science 171 (8) (1971) 675.
[64] W. Domcke, D. Yarkony, H. Köppel (Eds.), Conical intersections: Electronic
Structure, Dynamics and Spectroscopy, World Scientific, Singapore, 2004.
[65] C.E. Crespo-Hernández, B. Cohen, P.M. Hare, B. Kohler, Chem. Rev. 104 (2004)
1977.