C O M M U N I C A T I O N S
Table 1. Scope of the Cu(I)-Catalyzed Grignard Addition Reaction
Table 3. Sequential Oxidation/Alkylation of N-Sulfonyl Hydrazones
entry
R1
R2
R3
yield (%)
1
2
3
4
5
6
-CH2CH2CH2CH2-
Et
63
60
52
74
68
58
-CH2CH2CH2CH2-
i-Pr
t-Bu
Et
i-Pr
t-Bu
-CH2CH2CH2CH2-
Ph
Ph
Ph
H
H
H
Scheme 4. Concise Synthesis of the Trichodiene Core
Finally, the synthetic potential of this catalytic alkylation method
was tested by carrying out a concise synthesis of the core framework
of the natural product trichodiene (39, Scheme 4).9 To do so, 18
was treated with 1-methylcyclopentylmagnesium chloride to pro-
duce 40 in 74% yield, enabling the direct linkage of the adjacent
quaternary carbon centers in a single step.
In conclusion, we have developed the first Cu(I)-catalyzed
addition of Grignard reagents to in situ-derived N-sulfonyl azoalk-
enes. This umpolung alkylation reaction enables the synthesis of
extremely hindered compounds that would be inaccessible using
traditional enolate chemistry and also provides a unique approach
to regiocontrolled R,R-bisalkylation. Studies of the development
of an asymmetric version of this transformation are underway.
Table 2. R,R-Bisalkylation of R,R-Dichloro-N-sulfonyl Hydrazones
Acknowledgment. J.M.H. holds a C. R. Hauser Fellowship from
Duke University Department of Chemistry. This work was sup-
ported by Duke University and NCBC (2008-IDG-1010).
entry
R1
R2
R3
R4
X
yield (%)
1a
Me
Me
Me
H
H
H
Me
Me
Me
H
H
H
Me
Me
Me
Et
Et
Et
Me
Me
Me
Et
Et
Et
Et
Et
Br
Br
Cl
Br
Br
Cl
Br
Cl
Br
Br
Cl
Br
68
62
48
64
62
58
58
56
52
58
56
52
2a
i-Pr
t-Bu
Et
i-Pr
t-Bu
Et
Et
Et
Et
Et
i-Pr
t-Bu
Et
i-Pr
t-Bu
i-Pr
t-Bu
CH2t-Bu
i-Pr
t-Bu
CH2t-Bu
3a
4a
Supporting Information Available: Experimental procedures and
analytical data for all new compounds. This material is available free
5a
6a
7b
8b
References
9b
10b
11b
12b
(1) For example, see: (a) Berger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 2603.
(b) Berger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. (c) Behenna, D. C.;
Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (d) Doyle, A. G.;
Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 62. (e) Trost, B. M.; Xu, J.
J. Am. Chem. Soc. 2005, 127, 17180. (f) Graening, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 17192. (g) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.;
Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718. (h) Weix, D. J.; Hartwig,
J. F. J. Am. Chem. Soc. 2007, 129, 7720.
Et
a R3MgBr (4 equiv), CuCl (10 mol %), THF, -78 °C. b NaH, THF,
-78 °C; EtMgBr (1 equiv), CuCl (10 mol %); R4MgX (1 equiv).
(2) For ketones, see: Lundin, P. M.; Esquivias, J.; Fu, G. C. Angew. Chem., Int.
Ed. 2009, 48, 154. Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004,
126, 10240. For carboxylate derivatives, see: Brand, G. J.; Studte, C.; Breit,
B. Org. Lett. 2009, 11, 4668. Studte, C.; Breit, B. Angew. Chem., Int. Ed.
2008, 47, 5451. Dai, X.; Strotman, N. A.; Fu, G. C. J. Am. Chem. Soc.
2008, 130, 3302. Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
(3) Sacks, C. E.; Fuchs, P. L. J. Am. Chem. Soc. 1975, 97, 7372.
(4) Fuchs has also shown that Me2CuLi and t-Bu2CuLi add to preformed
tosylazocyclohex-1-ene to give R-methyl-and R-t-Bu-tosylcyclohexanone,
respectively (see ref 3).
product having three contiguous quaternary centers was produced
in 58% yield. We next attempted the bisalkylation using two
different Grignard reagents (entries 7-12). To do so, the initial
azoalkene was generated using NaH and then treated with the first
Grignard reagent and copper catalyst. After 1.5 h, the second
Grignard reagent was added. In each case, the desired bisalkylated
compound having two different alkyl groups was generated.
(5) Lipshutz, B. H. In Organometallics in Synthesis, 1st ed.; Schlosser, M., Ed.;
Wiley: Chichester, U.K., 1994; p 339.
To investigate the possibility of coupling hydrazone oxidation
with the catalytic alkylation reaction, N-sulfonyl hydrazones were
treated with phenyltrimethylammonium tribromide (PTAB) to
generate the R-bromo-N-sulfonyl hydrazones8 and then exposed
to the catalytic alkylation conditions (Table 3). We were pleased
to find that in every case the desired R-alkylated product was
produced from this sequential transformation.
(6) See the Supporting Information for details.
(7) The use of EtMgBr alone did not lead to product formation.
(8) Rosini, G.; Baccolini, G. J. Org. Chem. 1974, 39, 826.
(9) Schlessinger, R. H.; Schultz, J. A. J. Org. Chem. 1983, 48, 407. Snowden,
R. L.; Brauchli, R.; Sonnay, P. HelV. Chim. Acta 1989, 72, 570. (b) Tanaka,
M.; Sakai, K. Tetrahedron Lett. 1991, 32, 5581. (c) Kitano, Y.; Fukuda, J.;
Chiba, K.; Tada, M. J. Chem. Soc., Perkin Trans. 1 1996, 829. (d) Lange,
G. L.; Furlan, L.; MacKinnon, M. C. Tetrahedron Lett. 1998, 39, 5489.
JA100932Q
9
J. AM. CHEM. SOC. VOL. 132, NO. 13, 2010 4547