Chemistry Letters 2002
1125
indicated that germoxane 2 was a symmetrical structure. The
structure was established by X-ray crystallography.16 The
molecular structure is shown in Figure 2 as an anti-form ladder
ladder germoxane 2, which undergoes isomerization to give the
syn-type isomer. Dehydration of the syn-form germoxane gives
the cage germoxane 1.
ꢀ
germoxane. The average Ge–O bond length is 1.76 A in six-and
In summary, we synthesized cage hexakis(alkylgermasesqui-
oxane), (RGe)6O9, (R = i-Pr, t-Bu. c-C6H11) from hydrolysis of
RGe(OEt)nCl3-n (n = 0–3), and determined its crystal structure.
Cyclic and anti-form ladder germoxanes as intermediates of the
cage germoxanes by careful hydrolysis of RGe(OEt)nCl3-n were
examined.
eight-membered rings. The average O–Ge–O bond angle is 107ꢂ;
the average Ge–O–Ge is 126.5ꢂ. The structural parameters of 2
(e.g., Ge–O bond lengths, Ge–O–Ge angles, O–Ge–O angels) are
similar to those for 1.14;15
The authors thank Asai Germanium Research Institute Co.,
Ltd., for providing us trichlorogermane.
References and Notes
1
a) R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, Chem. Rev., 95,
1409 (1995). b) F. Feher, in ‘‘Silicon, Germanium, Tin, and Lead
Compounds. Metal Alkoxides, Diketonates and Carboxylates,’’ ed. by
B. Arkles, Gelest, Tullytown (1998), pp 43–59 and references cited
therein.
2
a) M. Unno, B. A. Shamsul, H. Saito, and H. Matsumoto, Organome-
tallics, 15, 2413 (1996). b) M. Unno, K. Takada, and H. Matsumoto,
Chem. Lett., 1998, 489. c) M. Unno, B. A. Shamsul, M. Arai, K. Takada,
and H. Matsumoto, Appl. Organomet. Chem., 13, 1 (1991). d) M. Unno,
A. Suto, K. Takada, and H. Matsumoto, Bull. Chem. Soc. Jpn., 73, 215
(2000). e) M. Unno, A, Suto, and H. Matsumoto, J. Am. Chem. Soc., 124,
1574 (2002).
3
4
U. Dittmar, B. J. Hendan, U. Floerke, and H. C. Marsmann, J.
Organomet. Chem., 489, 185 (1995) and references cited therein.
a) F. J. Feher, K. Rahimian, T. A. Budzichowski, and Z. W. Ziller,
Organometallics, 14, 3920 (1995) and references cited therein. b) F. J.
Feher, D. A. Newman, and J. F. Walzer, J. Am. Chem. Soc., 111, 1741
(1989).
a) Y. I. Smolin, Kristallografiya, 15, 31 (1970). b) Y. I. Smolin, Y. F.
Shepelev, A. S. Ershov, D. Hoebbel, and W. Wieker, Kristallografiya,
29, 712 (1984). c) D. Hoebbel, A. Engelhardt, A. Samoson, K. Ujszaszy,
and Y. I. Smolin, Z. Anorg. Allg. Chem., 552, 236 (1987).
J. F. Brown and L. H. Vogt, J. Am. Chem. Soc., 87, 4313 (1965).
H. Behbehani, B. J. Brisdon, M. F. Mahon, and K. Molloy, J.
Organomet. Chem., 469, 19 (1994).
Figure 2. An ORTEP representation of the structure of 2 (hydrogꢂen
ꢀ
atoms are omitted for clarity). Selected bond length (A) and angles ( ):
Ge1–O4#1 1.751(3), Ge1–O3 1.765(3), Ge1–O1 1.780(3), Ge1–C1
1.947(4), Ge2–O1 1.746(3), Ge2–O2 1.755(3), Ge2–C5 1.946(4), Ge2–
Cl1 2.1739(12), O4#1–Gel–O3 107.39(13), O4#1–Ge1–O1 106.43(13),
O3–Ge1–O1 107.68(13), O4#1–Ge1–C1 109.80(15), O3–Ge1–C1
112.05(16), O1–Ge1–C1 113.18(16).
5
6
7
After hydrolysis of 2 with aqueous NaOH in xylene at 140 ꢂC
for 3 h, the cage germasesquioxane 1 was formed in 18% isolated
yield together with polygermoxane. The formation of 1 suggests
that the germoxane 2 is clearly an intermediate for the formation
of 1.
The tert-butyl(dichloro)ethoxygermane, t-BuGe(OEt)Cl2,
prepared by t-BuGeCl3 and ethanol at room temperature for 2
weeks, was treated with water at 5 ꢂC for 3 h to give 3 as a sole
product. The product 3 was isolated by distillation in 31% yield.
1H NMR spectrum of 3 displayed two tert-butyl signals at 1.29
and 1.33 ppm in 1 : 2 ratio. 13C NMR of 3 showed four signals at
25.2, 25.5, 35.4, and 39.6 ppm. The fragment peak (Mþ-t-Bu)
with m=z 487 was observed. The NMR (1H and 13C{1Hg) and GC-
MS spectra of 3 disclosed it to be 1,3,5-tri-tert-butyl-1,3,5-
trichlorotrigermoxane. After hydrolysis of 3 for an additional
33 h, the anti-form ladder germoxane 2 was formed.
8
V. W. Day, W. G. Klemperer, V. V. Mainz, and M. Miller, J. Am. Chem.
Soc., 107, 8262 (1985).
P. A. Agaskar, J. Am. Chem. Soc., 111, 6858 (1989).
9
10 F. J. Feher, T. A. Budzichowski, K. Rahimian, and J. W. Ziller, J. Am.
Chem. Soc., 144, 3859 (1992) and references cited therein.
11 H. Tosaka, K. Yamaguchi, M. Orihara, N. Ide, and K. Otaki, Jpn. Kokai
Tokkyo Koho 87-24268 (1987); Chem Abstr., 107, 124570 (1987).
12 M. Uchida, Jpn. Kokai Tokkyo Koho 87-15560 (1987); Chem. Abstr.,
107, 124563 (1987).
13 R. Beer, H. Burgy, G. Calzaferri, and I. Kamber, J. Electron Spectrosc.
Relat. Phenom., 44, 121 (1987).
14 H. Puff, S. Franken, and W. Schuh, J. Organomet. Chem., 256, 23
(1983).
15 Crystal data for 1a: C18H42Ge6O9; fw = 838.06; crystal size
3
ꢁ
0:40 Â 0:20 Â 0:20 mm ; triclinic, space group P1, Z = 2, a =
ꢀ
11.9140(11) A,
ꢀ
12.5490(11) A,
ꢀ
b
=
c
=
13.2720(15) A, ꢀ
=
ꢂ
ꢂ
ꢂ
ꢀ 3
63.855(4) , ꢁ = 64.205(5) , ꢂ = 89.764(5) ; V ¼ 1559:3ð3Þ A ,
Dcalcd = 1.784 g/cm3; Goodness of fit = 1.048, R = 0.0388 (Rall
=
0.0479 for 4280 reflections), Rw = 0.1243 for 3522 reflections with
I > 2ꢃðIÞ. Crystallographic data for 1a have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication
no. CCDC-192754.
16 Crystal data for 2: C24H54Cl2Ge6O8; fw = 977.11; crystal size
3
ꢁ
0:40 Â 0:30 Â 0:30 mm ; triclinic, space group P1, Z = 1, a =
ꢀ
10.2730(10) A,
ꢀ
ꢀ
b
=
10.8ꢂ580(10) A,
c
=
ꢂ 10.9450(10) A, ꢀ
=
ꢀ 3
ꢂ
65.663(5) , ꢁ = 71.909(5) , ꢂ = 63.960(5) ; V = 986.84(16) A ,
Dcalcd = 1.644 g/cm3; Goodness of fit = 1.133, R = 0.0354 (Rall = 0.031
for 2604 reflections), Rw = 0.1188 for 2469 reflections with I > 2ꢃðIÞ.
CCDC-192755.
A reasonable mechanism is that two cyclic germoxanes 3
having probably cis,trans-1,3,5-tri-tert-butyl-1,3,5-trichlorocy-
clotrigermoxane geometry join co-facially to form the anti-form