C O M M U N I C A T I O N S
Table 2. Scope of PXPd/Cu(Xantphos)I-Catalyzed C-H Arylation
Scheme 1. Proposed Mechanism for the Direct C-H Arylation
King, and Jerry A. Murry and Prof. Steve L. Buchwald for their
insightful suggestions. We are grateful to Drs. Tsang-Lin Hwang,
Bo Shen, and Richard Staples for structural analysis assistance.
Supporting Information Available: Detailed experimental proce-
dures, analytical data for compounds, and CIF files for 2 and 3. This
References
(1) (a) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J.,
Eds.; Wiley-VCH: Weinheim, Germany, 1998. (b) Modern Arylation
Methods; Ackermann, L., Ed.; Wiley-VCH: Weinheim, Germany, 2009.
(2) Reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107,
174. (b) Seregin, I. V.; Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (c)
Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269.
(3) Selected examples: Pd (or with Cu): (a) Ackermann., L.; Althammer, A.;
Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201. (b) Do, H.-Q.; Kashif
Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (c) Chiong,
H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. (d) Nandurkar, N. S.; Bhanushali,
M. J.; Bhor, M. D.; Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045. (e)
Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63,
1970. (f) Yokooji, A.; Okazawa, T.; Tetsuya, S.; Miura, M.; Nomura, M.
Tetrahedron 2003, 59, 5685. (g) Pivsa-Art, S.; Satoh, Kawamura, Y.; Miura,
M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467. Rh: (h) Wang, X.;
Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (i) Lewis, L. C.;
Wu, J. Y.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130,
2493. Cu: (j) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You,
J. Angew. Chem., Int. Ed. 2009, 48, 3296. (k) Do, H.-Q.; Daugulis, O. J. Am.
Chem. Soc. 2007, 129, 12404. (l) Ackermann, L.; Potukuchi, H. K.;
Landsberg, D.; Vincente, R. Org. Lett. 2008, 10, 3081. Ni: (m) Hachiya, H.;
Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737. (n) Canivet, J.;
Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.
(4) (a) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle, M.;
Villermure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou,
K. J. Am. Chem. Soc. 2009, 131, 3291. (b) Larivee, A.; Mousseau, J. J.;
Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52.
(5) A multikilogram process based on this system was run successfully.
(6) 1 is commercially available from Combiphos. For examples in coupling
reactions, see: Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513. Other
ligands such as PtBu3, Xantphos, and some biphenyl phosphines with
[Pd(allyl)Cl]2 are competent palladium catalyst partners.
(7) 2 is an air-stable white solid that can be conveniently prepared in quantitative
yield from an equimolar ratio of CuI and Xantphos in CH2Cl2 or CH3CN.
(8) The coupling experiment using 0.25 mol % Pd and Xantphos in the absence
of 1 gave <5% product.
a Isolated yield. The reactions were monitored by LC-MS.
b Reaction conducted with 0.5 mol % 1 and 2 mol % 2.
(9) IPr ) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.
(10) Similar controversial poor reactivity of aryl iodides in C-H arylation has
recently been observed: Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou,
K. J. Am. Chem. Soc. 2006, 128, 581.
gashira reaction,16 but other mechanisms,1b including aromatic elec-
trophilic substitution as proposed by others,3c,g cannot be excluded.
In summary, we have disclosed a mild and efficient catalytic
system for direct arylation of heteroarenes. This new catalytic
system has been demonstrated to be suitable for the couplings of a
broad range of substrates. Notable features of this system include
the unprecedented high efficiency achieved by very low metal
loadings, which is attributed to the unique role of Cu(Xantphos)I.
Further applications to other substrates as well additional data on
the reaction mechanism will be reported in due course.
(11) The electron-rich 6-piperidinylbenzothiazole (Table 2, entry 13) is a superior
substrate in comparison with its 6-nitrile analogue (<5% conversion). 1H NMR
studies showed strong binding of 2 with the former to form the corresponding
complex, but the analogous interaction was not observed with the latter. A
similar explanation has been proposed in N-oxide C-H arylations. See:
Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
(12) The isotope effect (kH/kD ) 1.3) indicates that deprotonation is unlikely to be
the rate-determining step.
(13) The Xantphos bite angle may play a crucial role: Kamer, P. C.; Van
Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895.
(14) A similar mechanism was proposed in Pd/Cu-catalyzed decarboxylative
coupling: Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
(15) Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.;
Weissman, S. A.; Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 11, 345.
(16) Osakada, K.; Sakata, R.; Yamamoto, T. Organometallics 1997, 16, 5354.
Acknowledgment. This work is dedicated to the memory of
Prof. Keith Fagnou. We also thank Drs. Xiang Wang, Anthony O.
JA100354J
9
J. AM. CHEM. SOC. VOL. 132, NO. 11, 2010 3675