ORGANIC
LETTERS
2010
Vol. 12, No. 7
1628-1631
Synthetic and Mechanistic Studies of
the Aza-Retro-Claisen Rearrangement.
A Facile Route to Medium Ring Nitrogen
Heterocycles
Robert K. Boeckman, Jr.,* Nathan E. Genung, Ke Chen, and Todd R. Ryder
Department of Chemistry, UniVersity of Rochester, Rochester, New York 14627-0216
Received February 16, 2010
ABSTRACT
An efficient synthesis of medium-sized heterocyclic rings was achieved using a one-pot aza-Wittig/retro-aza-Claisen sequence of vinyl
cyclobutanecarboxaldehydes derived from simple allylic carbonates. The use of various Staudinger reagents in the aza-Wittig reaction allows
for a variety of N-substituted products to be obtained. The rearrangement is under thermodynamic control driven by relief of the cyclobutane
ring strain and resonance stabilization of the resulting vinylogous amide/sulfonamide.
Heterocycles containing seven- or eight-membered rings are
common structural elements in an array of natural products,
many of which possess valuable biological activities.1 A
number of useful synthetic methods have been developed
for the generation of medium ring nitrogen heterocycles,2
including rearrangement of N-alkyl-2,3-divinyl and N-acyl-
3-divinylaziridines,3 2-imino-3-vinyl-cyclopropanes,4 and
ring-closing metathesis (RCM).5 The latter occasionally
encounters problems with functional group compatibility and
sluggish reaction rate.6 Methods to prepare partially saturated
eight-membered azacycles are much rarer.6,7 We sought to
extend our prior studies of the retro-Claisen reaction to
develop an efficient and general route to medium size
nitrogen-containing rings.8 Our prior studies that examined
the retro-Claisen rearrangement of vinylcyclopropane and
vinylcyclobutane carboxaldehydes afforded a useful entry
to highly substituted enantiomerically enriched oxepines and
oxacenes culminating in the total synthesis of (+)-laurenyne
(Figure 1).8d
(1) (a) Faulkner, D. J. Nat. Prod. Rep. 1984, 1, 251–280. (b) Faulkner,
D. J. Nat. Prod. Rep. 1986, 3, 1–33. (c) Tsuda, M.; Kobayashi, J.
Heterocycles 1997, 46, 765–794. (d) Matzanke, N.; Gregg, R.; Weinreb,
S. Org. Prep. Proced. Int. 1998, 30, 1–52. (e) Magnier, E.; Langlois, Y.
Tetrahedron 1998, 54, 6201–6258.
(2) (a) Hassenruck, K.; Martin, H. D. Synthesis 1988, 1988, 569–586.
(b) Shaw, R.; Anderson, M.; Gallagher, T. Synlett 1990, 1990, 584–586.
(c) Evans, P. A.; Holmes, A. B. Tetrahedron 1991, 47, 9131–9166. (d)
Furness, K.; Aube, J. Org. Lett. 1999, 1, 495–498. (e) Larock, R. C.; Tu,
C.; Pace, P. J. Org. Chem. 1998, 63, 6859–6866.
(6) Borer, B. C.; Deerenberg, S.; Bieraugel, H.; Pandit, U. K. Tetrahe-
dron Lett. 1994, 35, 3191–3194.
(7) (a) Chang, M.-Y.; Kung, Y.-H.; Ma, C.-C.; Chen, S.-T. Tetrahedron
2006, 63, 1339–1344. (b) Georg, G. I.; Guan, X. Tetrahedron Lett. 1992,
33, 17–20. Arata, Y.; Tanaka, K.; Yoshifuji, S.; Kanatomo, S. Chem. Pharm.
(3) (a) Lindstro¨m, U., M.; Somfai, P. Chem.sEur. J. 2001, 7, 94–98.
(b) Pommelet, J. C.; Chuche, J. Can. J. Chem. 1976, 54, 1571–1581.
(4) Reissig, H.-U.; Bo¨ttcher, G.; Zimmer, R. Can. J. Chem. 2004, 82,
166–176.
Bull. 1979, 27, 981–983.
(8) (a) Boeckman, R. K., Jr.; Flann, C. J.; Poss, K. M. J. Am. Chem.
Soc. 1985, 107, 4359–4362. (b) Boeckman, R. K., Jr.; Shair, M. D.; Vargas,
J. R.; Stolz, L. A. J. Org. Chem. 1993, 58, 1295–1297. (c) Boeckman, R. K.,
Jr.; Reeder, M. R. J. Org. Chem. 1997, 62, 6456–6457. (d) Boeckman,
R. K., Jr.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891–3894.
(5) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28,
446–452.
10.1021/ol100397q 2010 American Chemical Society
Published on Web 03/10/2010