Cupric Halide-Mediated Intramolecular Halocyclization
COMMUNICATIONS
tion and extracted four times with diethyl ether. The organic
layers were combined and dried over Na2SO4. After evapo-
ration, the residue was purified by flash chromatography on
silica gel with petroleum ether/ethyl acetate [20/1 (v/v)] as
the eluent to afford 3-chloroindoles (2).
(6.31), 405 [M+ (79Br)] (6.86), 406 [(Mꢀ1)+ (81Br)] (31.46),
404 [(Mꢀ1)+ (79Br)] (27.59), 284, 210, 208, 171, 91, 65; HR-
MS: m/z=428.0292, calcd for (C19H20BrNO2S+Na+):
428.0290.
3-Chloro-N-methanesulfonyl-2-phenylindole (2a): white
solid; yield: 90%; m.p 105–1068C (recrystallization from pe-
troleum ether-dichloromethane). 1H NMR (300 MHz,
CDCl3): d=2.79 (s, 3H) 7.43–7.57 (m, 7H), 7.66–7.69 (m,
1H), 8.13–8.16 (m, 1H); 13C NMR (75 MHz, CDCl3): d=
39.9, 115.3, 115.6, 119.0, 125.0, 126.4, 127.8, 128.2, 128.9,
129.4, 131.0, 135.6, 135.9; IR (KBr): n=3011, 2929, 1448,
1365, 1176 cmꢀ1; MS (EI): m/z=307 [M+ (37Cl)] (25.88), 305
Acknowledgements
The National Basic Research Program of China
(2006CB806105) is acknowledged. We also thank the Nation-
al Natural Sciences Foundation of China (20472099) and
Chinese Academy of Sciences for financial support. We also
thank Professor Zhaoguo Zhang of Shanghai Jiao Tong Uni-
versity for his help.
[M CHTUNGTRENNUNG
+A(35Cl)] (71.06), 228, 226, 201, 199, 190; anal. calcd. for
C15H12ClNO2S: C 58.92, H 3.96, N 4.58, Cl 11.59; found: C
58.93, H 4.22, N 4.43, Cl 11.31.
Typical Procedure for the Preparation of 3-Bromo-
indoles Mediated by CuBr2 (Conditions B). Synthesis
of 3-Bromo-N-methanesulfonyl-2-phenylindole (4a)
as an Example
References
[1] For reviews, see: a) M. Lounasmaa, A. Tolvanen, Nat.
Prod. Rep. 2000, 17, 175–191; b) M. Somei, F. Yamada,
Nat. Prod. Rep. 2004, 21, 278–311; c) J. A. Joule, in:
Science of Synthesis, (Houben-Weyl Methods of Molec-
ular Transformations), (Ed.: E. J. Thomas), Georg
Thieme Verlag, Stuttgart, 2000; Vol. 10, pp 361–652;.
[2] a) V. Bocchi, G. Palla, Synthesis 1982, 1096–1097; b) P.
Martin, Tetrahedron Lett. 1987, 28, 1645–1646; c) P.
Martin, Helv. Chim. Acta 1988, 71, 344–347; d) G. H.
Timms, D. E. Tupper, S. E. Morgan, J. Chem. Soc.
Perkin Trans. 1 1989, 817–822; e) A. D. Billimoria,
M. P. Cava, J. Org. Chem. 1994, 59, 6777–6782;
f) M. R. Brennan, K. L. Erickson, F. S. Szmalc, M. J.
Tansey, J. M. Thornton, Heterocycles 1986, 24, 2879–
2885.
[3] For representative papers on the synthesis of 3-haloin-
dole mediated by N-halosuccinimides, see: a) M. G.
Saulnier, G. W. Gribble, J. Org. Chem. 1982, 47, 757–
761; b) M. G. Saulnier, G. W. Gribble, J. Org. Chem.
1983, 48, 2690–2695; c) A. G. Mistry, K. Smith, M. R.
Bye, Tetrahedron Lett. 1986, 27, 1051–1054; d) Y. Ko-
bayashi, T. Fujimoto, T. Fukuyama, J. Am. Chem. Soc.
1999, 121, 6501–6502; e) S. Katayama, N. Ae, R.
Nagata, J. Org. Chem. 2001, 66, 3474–3483; f) C. Ma,
X. Liu, X. Li, J. Flippen-Anderson, S. Yu, J. M. Cook,
J. Org. Chem. 2001, 66, 4525–4542.
Under nitrogen, a solution of 1a (60 mg, 0.22 mmol), CuBr2
(98 mg, 0.44 mmol) and Et3N (31 mL, 0.22 mmol) in DMSO
(1.1 mL) was stirred at room temperature for 3 days. The
mixture was then diluted with saturated NaCl solution and
extracted four times with diethyl ether. The organic layers
were combined and dried over Na2SO4. After evaporation,
the residue was purified by flash chromatography on silica
gel with petroleum ether/ethyl acetate [20/1 (v/v)] as the
eluent to afford the white solid 4a; yield: 96%; m.p 116–
1
1188C. H NMR (300 MHz, CDCl3): d=2.82 (s, 3H), 7.43–
7.54 (m, 7H), 7.62–7.65 (m, 1H), 8.12–8.15 (m, 1H);
13C NMR (75 MHz, CDCl3): d=40.3, 103.4, 115.4, 120.2,
124.9, 126.4, 127.8, 129.4, 129.5, 129.8, 131.1, 136.2, 137.4; IR
(KBr): n=3009, 1446, 1363, 1178 cmꢀ1; MS (EI): m/z=351
[M+ (81Br)] (35.81), 349 [M+ (79Br)] (35.25), 172, 270, 191,
164, 88; anal. calcd. for C15H12BrNO2S: C 51.44, H 3.45, N
4.00, Br 22.81; found: C 51.65, H 3.48, N 3.71, Br 22.48.
Typical Procedure for the Preparation of 3-Bromo-
indoles Mediated by CuBr2 (Conditions C). Synthesis
of 3-Bromo-2-n-butyl-N-(p-toluenesulfonyl)indole
(4c) as an Example
Under nitrogen, a solution of 1c (80 mg, 0.24 mmol), CuBr2
(136 mg, 0.61 mmol) and K2CO3 (33.7 mg, 0.24 mmol) in
DMSO (1.2 mL) was stirred at room temperature for 3 h.
The mixture was then diluted with saturated NaCl solution
and extracted four times with diethyl ether. The organic
layer was combined and dried over Na2SO4. After evapora-
tion, the residue was purified by flash chromatography on
silica gel with petroleum ether/ethyl acetate [25/1 (v/v)] as
the eluent to afford the white solid 4c; yield: 94%; m.p 70–
718C. 1H NMR (300 MHz, CDCl3): d=0.95 (t, J=7.2 Hz,
3H), 1.38–1.50 (m, 2H), 1.65–1.73 (m, 2H), 2.32 (s, 3H),
3.08 (t, J=7.2 Hz, 2H), 7.16 (d, J=7.8 Hz, 2H), 7.25–7.34
(m, 2H), 7.40–7.43 (m, 1H), 7.59 (d, J=7.8 Hz, 2H), 8.16–
8.19 (m, 1H); 13C NMR (75 MHz, CDCl3): d=13.8, 21.5,
22.5, 27.3, 31.9, 101.8, 115.0, 119.2, 124.1, 125.1, 126.3, 129.2,
129.8, 135.5, 135.9, 138.9, 144.9; IR (KBr): n=3069, 2959,
1598, 1450, 1374, 1176 cmꢀ1; MS (EI): m/z=407 [M+ (81Br)]
[4] a) K. Akinori, N. Tatsuya, Synthesis 1980, 365–366;
b) G. Tarzia, G. Diamantini, B. Di. Giacomo, G. Spado-
ni, J. Med. Chem. 2000, 43, 2449–2456.
[5] For selected papers for the synthesis of 3-haloindoles
via other methods, see: a) J. Bergman, R. Carlsson, B.
Sjoberg, J. Heterocycl. Chem. 1977, 14, 1123–1134;
b) A. Kubo, K. Uchino, Heterocycles 1981, 16, 1441–
1443; c) G. W. Gribble, B. D. Allison, S. C. Conway,
M. G. Saulnier, Org. Prep. Proced. Int. 1992, 24, 649–
654; d) B. Witulsk, N. Buschmann, U. Bergstrꢂßer, Tet-
rahedron 2000, 56, 8473–8480; e) ꢃ. Balogh-Hergovich,
G. Speier, J. Chem. Soc. Perkin Trans. 1 1986, 2305–
2308; f) S. Tang, J.-H. Li, Y.-X. Xie, N.-X. Wang, Syn-
thesis 2007, 1535–1541.
[6] J. Barluenga, M. Trincado, E. Rubio, J. M. Gonzꢄlez,
Angew. Chem. 2003, 115, 2508–2511; Angew. Chem.
Int. Ed. 2003, 42, 2406–2409.
Adv. Synth. Catal. 2009, 351, 3107 – 3112
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3111