10.1002/chem.201903590
Chemistry - A European Journal
COMMUNICATION
C-3, was formed in 67% yield and furan 13f, bearing a TBS
conditions. Additionally, the photochemical route enabled the
isomerization of otherwise unreactive diols to give trisubstituted
furans. We anticipate that this method will find utility in both drug
discovery and natural product synthesis, where there is a
significant need for mild new routes to highly functionalised
aromatic heterocycles.
protected alcohol, in 46% yield.
Acknowledgements
We are grateful to the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement n° 316955 (S.W.),
Cancer Research UK (CR-UK grant number C38302/A13012),
through an Oxford Cancer Research Center Prize DPhil
Studentship (J.C.L.W.).
Conflict of Interest
The authors declare no conflict of interest
Keywords: Photochemical isomerization, heterocycles,
furans, pyrroles, functional group tolerance
[1]
a) S. Poplata, A. Tröster, Y.-Q. Zou, T. Bach, Chem. Rev. 2016, 116,
9748–9815; b) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116,
10035–10074; c) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–
10166.
[2]
M. D. Kärkäs; J. A. Porco Jr.; C. R. J. Stephenson, Chem. Rev. 2016,
116, 9683–9747.
[3]
Heterocycles in Natural Product Synthesis, (Eds: K. C. Majumdar, S. K.
Chattopaghyay), Wiley-VCH, Weinheim, Germany 2011.
[4]
Heterocycles in Drug Discovery, (Ed: J. J. Li), John Wiley and Sons,
Hoboken, USA 2013.
[5]
For highlighted examples, see: a) R. Wright, J. Health Care Market. 1996,
16, 24–29; b) M. Carmen Sánchez, M. J. Ortega, Eva Zubía, J. Luis Craballo, J.
Nat. Prod. 2006, 69, 1749–1755; c) H. H. A. Linde, Helv. Chim. Acta 1965, 48,
1822–1842; d) O. Baudoin, D. Guꢀnard, F. Guꢀritte, Mini-Rev. Org. Chem.,
2004, 1, 333–341.
[6]
For reviews of routes to substituted furan and pyrrole heterocycles, see:
a) J. A. Joule, K. Mills, Heterocyclic Chemistry 5th Ed.; Wiley & Sons, Chichester
2010; b) W. J. Moran, A. Rodríguez, New J. Org. Synth. 2012, 44, 103–130; c)
F. J. Leeper, J. M. Kelly, New J. Org. Synth. 2013, 45, 171–210; d) V. Estévez,
M. Villacampa, J. Carlos Menéndez, Chem. Soc. Rev. 2014, 43, 4633–4657.
[7]
a) T. Horaguchi, N. Hosokawa, K. Tanemura, T. Suzuki, J. Heterocyclic
Chem. 2002, 39, 61–67; b) A. Padwa, T. Stengel, Tetrahedron Lett. 2004, 45,
5991–5993; c) M. Austin, O. J. Egan, R. Tully, A. C. Pratt, Org. Biomol. Chem.
2007, 5, 3778–3786; d) T. Mitamura, A. Ogawa, J. Org. Chem. 2011, 76, 1163–
1166; e) K. Selvam, M. Swaminathan, RSC Advances 2012, 2, 2848–2855; f)
J.-R., Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res. 2016, 49, 1911–
1923.
[8]
For rearrangements of cyclic species to aromatic heterocyles including
furans and pyrroles, see: N. Vivona, S. Buscemi, I. Pibiri, A. P. Piccionello, A.
Pace, in Handbook of Synthetic Photochemistry, (Eds. A. Albini, M. Fagnoni),
Wiley-VCH, Weinheim, Germany 2010, pp. 387–416.
[9]
a) T. J. Donohoe, J. F. Bower, L. K. M. Chan, Org. Biomol. Chem. 2012,
10, 1322–1328; b) H. K. Potukuchi, A. P. Spork, T. J. Donohoe, Org. Biomol.
Chem. 2015, 13, 4367−4373; c) B. S. Pilgrim, A. E. Gatland, C. H. A. Esteves,
C. T. McTernan, G. R. Jones, M. R. Tatton, P. A. Procopiou, T. J. Donohoe, Org.
Biomol. Chem. 2016, 14, 1065–1090.
[10] a) T. J. Donohoe, J. F. Bower, Proc. Natl. Acad. Sci. US. 2010, 107,
3373–3376; b) T. J. Donohoe, J. F. Bower, J. A. Basutto, Nature Protocols 2010,
5, 2005–2010.
[11] H. O. House, J. Org. Chem. 1959, 24, 1374–1375.
[12] M. Vuagnoux-d’Augustin, A. Alexakis, Eur. J. Org. Chem. 2007, 35,
5852–5860.
[13] a) J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2015, 137, 11254–
11257; b) J. B. Metternich, R. Gilmour, Synlett 2016, 27, 2541–2552.
[14] For other reports of (E) to (Z) alkene isomerization including examples
of enones, see: a) D. C. Farby, M. A. Ronge, M. Rueping, Chem. Eur. J. 2015,
21, 5350–5354; b) A Singh, C. J. Fennel, J. D. Weaver, Chem. Sci. 2016, 7,
6796–6802; c) W. Cai, H. Fan, D. Ding, Y. Zhang, W. Wang, Chem. Comm.
2017, 53, 12918–12921.
[15] J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2016, 138, 1040–1045.
[16] For a recently disclosed related transition metal catalysed approach,
see: K. Zhan, Y. Li, Catalysts 2017, 7, 337–345.
[17] D. M. Sammond, T. Sammakia, Tetrahedron Lett. 1996, 37, 6065–
6068.
[18] a) A. Fürstner, K. Langemann, Synthesis 1997, 792–803; b) S.
BouzBouz, J. Cossy, Org. Lett. 2001, 3, 1451–1454.
[19] T. J. Donohoe, N. J. Race, J. F. Bower, C. K. A. Callens, Org. Lett. 2010,
12, 4094–4097.
Scheme 6. Scope of trisubstituted furan formation. aPerformed on 3.00 mmol
scale. bPerformed on 1.00 mmol scale. cPerformed on 0.22–0.50 mmol scale.
f
dPerformed on 0.05–0.15 mmol scale. e1.27 mmol scale 10 mol% HG-II, 100
°C. f39% 10c was recovered. gPerformed on a 0.877 mmol scale; 54% 10d was
recovered. hkinetic resolution to furnish the cis product.
In conclusion, a photochemical approach to functionalized
heterocycles has been developed. The use of UV light in place of
Brønsted acids allows for the synthesis of functionally rich
disubstituted furans and pyrroles under mild and easily accessible
This article is protected by copyright. All rights reserved.