pubs.acs.org/joc
products, including piperidines,8 pyrrolines,9 imidazolidi-
Amine-Promoted Synthesis of Vinyl Aziridines
nones,10 β-lactams,11 and azepines.12 Strategies for their
synthesis include guanidinium ylide addition to R,β-unsatu-
rated aldehydes,13 nitrenoid additions to 1,3-dienes,14 elimi-
nation from amino- or azido-alcohols,15 and Wittig reac-
tions of aziridine-2-carbaldehydes,16 with the most common
strategy involving allyl ylide addition to imines.17 However,
it is notable that few methods provide the desired vinyl
aziridines with consistently high levels of cis/trans diaster-
eoselectivity for a broad range of substrates.
Alan Armstrong,*,† Robert D. C. Pullin,† Chloe R. Jenner,†
and James N. Scutt‡
†Department of Chemistry, Imperial College London, South
Kensington, London, SW7 2AZ, United Kingdom, and
‡Syngenta Ltd., Jealott’s Hill International Research Centre,
Bracknell, Berkshire, RG42 6EY, United Kingdom
We have previously reported18 a diastereoselective aziri-
dination of R,β-unsaturated carbonyl compounds to afford
trans-aziridines in good to excellent yield (Scheme 1).19 Our
method involves the amination of a tertiary amine, which in
the presence of base is presumed to form a reactive N-N ylide
(referred to as an aminimine or aminimide), which subse-
quently undergoes conjugate addition to R,β-unsaturated
carbonyl compounds, followed by ring-closure to afford the
NH-aziridine. The tertiary amine mediator is regenerated in
this step, and can in principle be used in substoichiometric
quantities. The reaction proved broad in scope allowing the
aziridination of R,β-unsaturated ketones bearing either
β-alkyl, aromatic, or heterocyclic aromatic substituents, and
significantly also allowed the aziridination of R,β-unsatu-
rated esters, a challenge not possible via iminium ion organo-
catalytic aziridination methods.20 We were also able to
Received March 4, 2010
N-Unsubstituted vinyl aziridines were synthesized via an
amine-promoted regioselective nucleophilic aziridination
of R,β,γ,δ-unsaturated carbonyl compounds. The reac-
tion is completely regioselective (>95: 5) for the R,β-
alkene and completely diastereoselective, affording the
trans-vinyl aziridine in moderate-to-good yields.
(11) (a) Ley, S. V.; Middleton, B. Chem. Commun. 1998, 1995. (b) Spears,
G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91. (c) Fontana, F.; Tron,
G. C.; Barbero, N.; Ferrini, S.; Thomas, S. P.; Aggarwal, V. K. Chem.
Commun. 2010, 46, 267.
(12) (a) Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re,
N.;Cenini, S. Chem.—Eur. J.2009, 15, 1241. (b) Scheiner, P. J. Org. Chem. 1967,
32, 2628. (c) Stogryn, E. L.; Brois, S. J. J. Am. Chem. Soc. 1967, 89, 605.
(13) Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399.
(14) (a) Knight, J. G.; Muldowney, M. P. Synlett 1995, 949. (b) Nishimura,
M.; Minakata, S.; Thongchant, S.; Ryu, I.; Komatsu, M. Tetrahedron Lett.
2000, 41, 7089.
(15) (a) Lindstrom, U. M.; Somfai, P. Synthesis 1998, 109. (b) Zamboni,
R.; Rokach, J. Tetrahedron Lett. 1983, 24, 331. (c) Olofsson, B.; Wijtmans,
R.; Somfai, P. Tetrahedron 2002, 58, 5979.
(16) Baktharaman, S.; Afagh, N.; Vandersteen, A.; Yudin, A. K. Org.
Lett. 2010, 12, 240.
(17) (a) Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Chen, M.-B. J. Org. Chem.
1996, 61, 4641. (b) Wang, D.-K.; Dai, L.-X.; Hou, X.-L. Chem. Commun.
1997, 1231. (c) Liao, W.-W.; Deng, X.-M.; Tang, Y. Chem. Commun. 2004,
1516. (d) Zheng, J.-C.; Liao, W.-W.; Sun, X.-X.; Sun, X.-L.; Tang, Y.; Dai,
L.-X.; Deng, J.-G. Org. Lett. 2005, 7, 5789. (e) Li, A.-H.; Dai, L.-X.; Hou,
X.-L. J. Chem. Soc., Perkin Trans. 1 1996, 867. (f) Zhu, B.-H.; Zheng, J.-C.;
Yu, C.-B.; Sun, X.-L.; Zhou, Y.-G.; Shen, Q.; Tang, Y. Org. Lett. 2010, 12,
504. (g) Iska, V. B. R.; Gais, H. J.; Tiwari, S. K.; Babu, G. S.; Adrien, A.
Tetrahedron Lett. 2007, 48, 7102. (h) Arini, L. G.; Sinclair, A.; Szeto, P.;
Stockman, R. A. Tetrahedron Lett. 2004, 45, 1589. (i) Morton, D.; Pearson,
D.; Field, R. A.; Stockman, R. A. Org. Lett. 2004, 6, 2377. (j) Chigboh, K.;
Nadin, A.; Stockman, R. A. Synlett 2007, 2879. (k) Chigboh, K.; Morton, D.;
Nadin, A.; Stockman, R. A. Tetrahedron Lett. 2008, 49, 4768. (l) Illa, O.;
Arshad, M.; Ros, A.; McGarrigle, E. M.; Aggarwal, V. K. J. Am. Chem. Soc.
2010, 132, 1828. (m) Aggarwal, V. K.; Alonso, E.; Fang, G. Y.; Ferrara, M.;
Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433.
(18) (a) Armstrong, A.; Baxter, C. A.; Lamont, S. G.; Pape, A. R.;
Wincewicz, R. Org. Lett. 2007, 9, 351. (b) Armstrong, A.; Carbery, D. R.;
Lamont, S. G.; Pape, A. R.; Wincewicz, R. Synlett 2006, 2504.
(19) For a related approach see: Shen, Y.-M.; Zhao, M.-X.; Xu, J. X.;
Shi, Y. Angew. Chem., Int. Ed. 2006, 45, 8005.
Aziridines are versatile building blocks for the synthesis of
diverse nitrogen-containing products via ring-opening and
ring-expansion reactions.1-5 Vinyl aziridines are a particu-
larly interesting class of aziridine that lend themselves to a
host of highly useful synthetic transformations. They are
versatile electrophiles and notably undergo regioselective
ring-opening via addition at either the vinyl terminus6 or
directly at the aziridine depending on the reagents emplo-
yed.7 Moreover, vinyl aziridines can be exploited in a variety
of ring-expansion reactions to afford a range of heterocyclic
(1) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247.
(2) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
(3) Xu, X. E. Tetrahedron 2004, 60, 2701.
(4) McCoull, W.; Davis, F. A. Synthesis 2000, 1347–1365.
(5) Yudin, A. K., Ed. Aziridines and Epoxides in Organic Synthesis; Wiley-
VCH: Weinheim, Germany, 2006.
(6) (a) Crotti, S.; Bertolini, F.; Macchia, F.; Pineschi, M. Org. Lett. 2009,
11, 3762. (b) Fujii, N.; Nakai, K.; Tamamura, H.; Otaka, A.; Mimura, N.;
Miwa, Y.; Taga, T.; Yamamoto, Y.; Ibuka, T. J. Chem Soc., Perkin Trans. 1
1995, 1359. (c) Wipf, P.; Fritch, P. C. J. Org. Chem. 1994, 59, 4875. (d) Ibuka,
T.; Nakai, K.; Habashita, H.; Hotta, Y.; Fujii, N.; Mimura, N.; Miwa, Y.;
Taga, T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 652.
(7) (a) Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399. (b) Trost,
B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T. Angew. Chem., Int. Ed.
2007, 46, 6123.
(8) (a) Coldham, I.; Collis, A. J.; Mould, R. J.; Rathmell, R. E. Tetrahedron
Lett. 1995, 36, 3557. (b) Ahman, J.; Somfai, P. Tetrahedron Lett. 1995, 36, 303.
(9) (a) Brichacek, M.; Lee, D.; Njardarson, J. T. Org. Lett. 2008, 10, 5023.
(b) Fugami, K.; Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett.
1985, 26, 857. (c) Atkinson, R. S.; Rees, C. W. Chem. Commun. 1967, 1232.
(10) Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836.
(20) (a) Pesciaioli, F.; De Vincentiis, F.; Galzerano, P.; Bencivenni, G.;
Bartoli, G.; Mazzanti, A.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47,
8703. (b) Vesely, J.; Ibrahem, I.; Zhao, G. L.; Rios, R.; Cordova, A. Angew.
Chem., Int. Ed. 2007, 46, 778. (c) Arai, H.; Sugaya, N.; Sasaki, N.; Makino,
K.; Lectard, S.; Hamada, Y. Tetrahedron Lett. 2009, 50, 3329.
DOI: 10.1021/jo100407s
r
Published on Web 04/07/2010
J. Org. Chem. 2010, 75, 3499–3502 3499
2010 American Chemical Society