apparatus investigated, microwave-assisted batch processes in a
single-mode cavity were found mostly to be highly efficient and
were transferred successfully to continuous stop-flow production
in the Voyager system, continuous processing in the single-mode
Discover system and batch processing in a multimode synthesizer
on <4 mmol scale. Finally, through reaction dilution and small
adjustments in residence time, this reaction was transferred
successfully to mesoscale production using a continuous flow
multimode microwave reactor. This shows that current technology
does have the means to scale-up or scale-out microwave batch
experiments and that the reaction parameters for the Bohlmann–
Rahtz cyclodehydration reaction transfer reliably between differ-
ent technology platforms for mesoscale production.
It is premature to say whether these same design rules hold
for other systems and reactions of study. It could be anticipated
that, in a similar fashion, discoveries made in microwave batch
experiments, in particular for homogenous mixtures, will follow
similar principles. One would expect the scale up of these methods
would be relatively straightforward using a stop-flow microwave
platform, a single- or multi-mode microwave flow reactor or a
multimode batch reactor, providing with the latter that there was
not much more than a ten-fold increase in scale. Continuous flow
conductive heating platforms, on the other hand, operating on
either micro- or mesoscale production, would seem to give rise
to small but significant differences in the chemical efficiency of
reaction, that one could attribute to variations in heating profile
or temperature measurement. Whether these design rules hold for
the scale up of heterogeneous processes, such as reactions over a
catalyst bed, procedures with solid precipitation or crystallization
or for the processing of slurries, is another matter entirely and one
that will continue to provide significant challenges for continuous
flow platforms and microwave-assisted synthesis for some time to
come.
N. E. Leadbeater and V. A. Williams, Org. Process Res. Dev., 2008, 12,
41.
7 (a) K. G. Kabza, B. R. Chapados, J. E. Gestwicki and J. L. McGrath,
J. Org. Chem., 2000, 65, 1210; (b) B. M. Khadilkar and V. R. Madyar,
Org. Process Res. Dev., 2001, 5, 452; (c) E. Esveld, F. Chemat and J. van
Haveren, Chem. Eng. Technol., 2000, 23, 279; (d) E. Esveld, F. Chemat
and J. van Haveren, Chem. Eng. Technol., 2000, 23, 429; (e) W.-C. Shieh,
S. Dell and O. Repicˇ, Tetrahedron Lett., 2002, 43, 5607; (f) N. S. Wilson,
C. R. Sarko and G. P. Roth, Org. Process Res. Dev., 2004, 8, 535; (g) O.
Benali, M. Deal, E. Farrant, D. Tapolczay and R. Wheeler, Org. Process
Res. Dev., 2008, 12, 1007; (h) K. Mennecke, R. Cecilia, T. N. Glasnov,
S. Gruhl, C. Vogt, A. Feldhoff, M. A. L. Vargas, C. O. Kappe, U. Kunz
and A. Kirschning, Adv. Synth. Catal., 2008, 350, 717; (i) W. Solodenko,
K. Mennecke, C. Vogt, S. Gruhl and A. Kirschning, Synthesis, 2006,
1873; (j) R. J. J. Jachuck, D. K. Selvaraj and R. S. Varma, Green Chem.,
2006, 8, 29; (k) K. A. Savin, M. Robertson, D. Gernert, S. Green, E. J.
Hembre and J. Bishop, Mol. Diversity, 2003, 7, 171; (l) W.-C. Shieh,
S. Dell and O. Repicˇ, Org. Lett., 2001, 3, 4279.
8 (a) Microreactors in Organic Synthesis and Catalysis, ed. T. Wirth,
Wiley-VCH, Weinheim, 2008; (b) P. Watts and S. J. Haswell, Drug
Discovery Today, 2003, 8, 586; (c) C. Wiles and P. Watts, Expert
Opin. Drug Discovery, 2007, 2, 1487; (d) Microreaction Technology,
ed. W. Ehrfeld, Springer, Berlin, 1998; (e) W. Ehrfeld, V. Hessel and
H. Lc¸we, Microreactors, Wiley-VCH, Weinheim, 2000; (f) Microsystem
Technology in Chemistry and Life Sciences, ed. A. Manz and H. Becker,
Springer, Berlin, 1999.
9 (a) E. Comer and M. G. Organ, J. Am. Chem. Soc., 2005, 127, 8160;
(b) E. Comer and M. G. Organ, Chem.–Eur. J., 2005, 11, 7223; (c) G.
Shore, S. Morin and M. G. Organ, Angew. Chem., Int. Ed., 2006, 45,
2761.
10 P. He, S. J. Haswell and P. D. I. Fletcher, Appl. Catal., A, 2004, 274,
111.
11 I. R. Baxendale, C. M. Griffiths-Jones, S. V. Ley and G. K. Tranmer,
Chem.–Eur. J., 2006, 12, 4407.
12 T. M. Barnard, N. E. Leadbeater, M. B. Boucher, L. M. Stencel and
B. A. Wilhite, Energy Fuels, 2007, 21, 1777.
13 R. M. Paulus, T. Erdmenger, C. R. Becer, R. Hoogenboom and U. S.
Schubert, Macromol. Rapid Commun., 2007, 28, 484.
14 U. Kunz, A. Kirschning, H.-L. Wen, W. Solodenko, R. Cecilia, C. O.
Kappe and T. Turek, Catal. Today, 2005, 105, 318.
15 U. R. Pillai, E. Sahle-Demessie and R. S. Varma, Green Chem., 2004,
6, 295.
16 M. C. Bagley, R. L. Jenkins, M. C. Lubinu, C. Mason and R. Wood,
J. Org. Chem., 2005, 70, 7003.
17 T. N. Glasnov, D. J. Vugts, M. M. Koningstein, B. Desai, W. M. F.
Fabian, R. V. A. Orru and C. O. Kappe, QSAR Comb. Sci., 2006, 25,
509.
18 G. Jas and A. Kirschning, Chem.–Eur. J., 2003, 9, 5708.
19 (a) T. Razzaq, T. N. Glasnov and C. O. Kappe, Chem. Eng. Technol.,
2009, 32, 1702; (b) T. N. Glasnov, S. Findenig and C. O. Kappe, Chem.–
Eur. J., 2009, 15, 1001.
20 (a) F. Bohlmann and D. Rahtz, Chem. Ber., 1957, 90, 2265; (b) M. C.
Bagley, C. Glover and E. A. Merritt, Synlett, 2007, 2459.
21 J. D. Moseley, P. Lenden, M. Lockwood, K. Ruda, J.-P. Sherlock, A. D.
Thomson and J. P. Gilday, Org. Process Res. Dev., 2008, 12, 30.
22 (a) M. C. Bagley, R. Lunn and X. Xiong, Tetrahedron Lett., 2002, 43,
8331; (b) M. C. Bagley, Z. Lin and S. J. A. Pope, Chem. Commun., 2009,
5165.
Acknowledgements
We thank the BBSRC (BB/D524140) and EPSRC (GR/S25456)
for support of this work, Moharem El Gihani (Syrris), Mike Hawes
(Syrris), Matthew Burwood (a1-envirotech), Otman Benali (Uniq-
sis), Samantha Dunnage (Asynt), Laura Favretto (Milestone) and
Robin Wood (AstraZeneca) for valuable assistance, and CEM
(Microwave Technology) Ltd, Syrris Ltd., Milestone S.r.I. and
Uniqsis Ltd. for permitting us to test their apparatus in our
laboratories.
23 M. C. Bagley, C. Brace, J. W. Dale, M. Ohnesorge, N. G. Phillips,
X. Xiong and J. Bower, J. Chem. Soc., Perkin Trans. 1, 2002, 1663.
24 M. C. Bagley, J. W. Dale, M. Ohnesorge, X. Xiong and J. Bower,
J. Comb. Chem., 2003, 5, 41.
25 X. Xiong, M. C. Bagley and K. Chapaneri, Tetrahedron Lett., 2004, 45,
6121.
Notes and references
1 A. Kirschning, W. Solodenko and K. Mennecke, Chem.–Eur. J., 2006,
12, 5972.
2 (a) S. Caddick and R. Fitzmaurice, Tetrahedron, 2009, 65, 3325; (b) C. O.
Kappe, Chem. Soc. Rev., 2008, 37, 1127; (c) C. O. Kappe, Angew. Chem.,
Int. Ed., 2004, 43, 6250; (d) C. O. Kappe and A. Stadler, Microwaves in
Organic and Medicinal Chemistry, Wiley-VCH, Weinheim, 2005.
3 A. Kirschning and G. Jas, Top. Curr. Chem., 2004, 242, 209.
4 (a) T. N. Glasnov and C. O. Kappe, Macromol. Rapid Commun., 2007,
28, 395; (b) I. R. Baxendale, J. J. Hayward and S. V. Ley, Comb. Chem.
High Throughput Screening, 2007, 10, 802; (c) I. R. Baxendale and
M. R. Pitts, Chimica Oggi - Chemistry Today, 2006, 24, 41.
5 T. Cablewski, A. F. Faux and C. R. Strauss, J. Org. Chem., 1994, 59,
3408.
26 K. T. J. Loones, B. U. W. Maes, G. Rombouts, S. Hostyn and G. Diels,
Tetrahedron, 2005, 61, 10338.
27 (a) J. D. Ferguson, Mol. Diversity, 2003, 7, 281; (b) M. D. Bowman, J. R.
Schmink, C. M. McGowan, C. M. Kormos and N. E. Leadbeater, Org.
Process Res. Dev., 2008, 12, 1078; (c) H. Lehmann and L. LaVecchia,
˚
JALA, 2005, 10, 412; (d) R. Hoogenboom, R. M. Paulus, A. Pilotti and
U. S. Schubert, Macromol. Rapid Commun., 2006, 27, 1556.
28 J. D. Moseley and E. K. Woodman, Org. Process Res. Dev., 2008, 12,
967.
6 (a) J. M. Kremsner, A. Stadler and C. O. Kappe, Top. Curr. Chem.,
2006, 266, 233; (b) M. D. Bowman, J. L. Holcomb, C. M. Kormos,
29 J. Fetter, I. Nagy, L. T. Giang, M. Kajta´r-Peredy, A. Rockenbauer,
L. Korecz and G. Czira, J. Chem. Soc., Perkin Trans. 1, 2001, 1331.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 2245–2251 | 2251
©