JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
4 de Abajo, J.; de la Campa, J. G.; Lozano, A. E.; Preston, J. In
Polymeric Materials Encyclopedia; Salamone, J. C. Ed.; CRC
Press: Boca Raton, FL, 1996.
molecular weight, did give brittle films with insufficient me-
chanical strength to be tested under standard conditions.
However, polymer 2b, which showed only slightly higher mo-
lecular weight did give creaseable films that could be prop-
erly tested. The less rigid oxydiphenylene moiety of polymer
2b respect to the short-rigid 1,3-phenylene moiety of poly-
mer 2a should be considered as responsible of this behavior.
In general, the mechanical properties compared fairly well
with values reported earlier for experimental aromatic poly-
amides and other engineering thermoplastic polymers.34
Nevertheless, the presence of the bulky side adamantyl
groups slightly lowered the mechanical strength compared
with wholly aromatic PIPAs. Conversely, the values of moduli
of the current PIPAs with the pendent adamantyl group
were comparatively high, matching the moduli of amorphous
aromatic polyamides without pendent groups.24
5 Espeso, J. F.; de la Campa, J. G.; Lozano, A. E.; de Abajo, J.
J Polym Sci Part A: Polym Chem 2000, 38, 1014–1023.
6 Huang, T. L.; Hsiao, S. H. J Polym Res 2004, 11, 2–21.
7 Cheng, L.; Wu, H.; Ying, L.; Yang, X. L.; Jian, X. G. Desig
Monom Polym 2004, 7, 225–234.
8 Ge, Z.; Yang, S.; Tao, Z.; Liu, J.; Fan, L. Polymer 2004, 11,
3627–3635.
9 (a) Mallakpour, S.; Kowsari, E.; Polym Adv Technol 2005, 16,
732–737; (b) Bennet, C.; Kaya, E.; Sikes, A. M.; Jarret, W. L.;
Mathias, L. J. J Polym Sci Part A: Polym Chem 2009, 47,
4409–4419.
10 Chern, Y. T.; Shiue, H. C.; Kao, S. C. J Polym Sci Part A:
Polym Chem 1998, 36, 785–792.
11 Hsiao, S. H.; Li, C. T. Macromolecules 1998, 31, 7213–7217.
CONCLUSIONS
12 (a) Maya, E. M.; Lozano, A. E.; de la Campa, J. G.; de Abajo,
J. Macromol Rapid Commun 2004, 25, 592–597; (b) Hsiao,
S.-H.; Liou, G.-S.; Wang, H.-M. J Polym Sci Part A: Polym
Chem 2009, 47, 2330–2343.
By a facile, high yield route, it was possible to prepare the
new condensation monomer 5-[(1-adamantylcarbonyl)amino]
isophthalic acid (5-ADIP), which was readily purified to poly-
condensation grade.
13 de Abajo, J.; de la Campa, J. G.; Lozano, A. E.; Alvarez, J. C.
High yields and high-molecular weights were achieved for
the synthesis of adamantyl pendent PIPAs by the direct poly-
amidation method of Yamazaki-Higashi using 5-ADIP and a
series of technical aromatic diamines. The results confirmed
that the bulky pendent group did not much effect the reac-
tivity of the carboxylic functions of the isophthalic acid.
Adv Mat 1995, 7, 148–151.
14 (a) Diakoumakos, C.; Mikroyannidis, J. A. Polymer 1994, 35,
1986–1990; (b) de Abajo, J.; Santos, E. Angew Makromol Chem
1983, 111, 17–27.
15 Lozano, A. E.; de la Campa, J. G.; de Abajo, J.; Preston, J.
Polymer 1994, 35, 872–877.
The presence of the pendent bulky groups greatly affected
the general properties of these polymers compared with
those of unmodified PIPAs. Better solubility and much higher
Tg values were measured for the modified polymers; Tgs in
the range 335–370 ꢀC qualify the current polymers among
the PIPAs with highest Tg ever reported. Furthermore, the
current polymers showed higher Tgs than homologous PIPAs
containing benzamido or heterocyclic moieties as pendent
groups. On the other hand, the incorporation of an adaman-
tane pendent group linked to the isophthaloyl moiety by an
amide group caused a decrease in thermal resistance, as ini-
tial decomposition temperatures around 400 ꢀC were some-
thing lower than those observed for classical PIPAs. Mechani-
cal resistance and moduli of films, from 2.0 to 2.6 GPa, were
reasonably high and comparable to those of other PIPAs pre-
viously reported.
16 Lozano, A. E.; de la Campa, J. G.; de Abajo, J.; Preston, J.
Polymer 1994, 35, 1317–1321.
17 Mikroyannidis, J. A. Polymer 1996, 37, 2715–2721.
18 (a) Hsiao, S.-H.; Lee, C.-T. J Polym Sci Part A: Polym Chem
1999, 37, 1435–1442; (b) Kung. Y.-C.; Liou, G.-S.; Hsiao, S.-H. J
Polym Sci Part A: Polym Chem 2009, 47, 1740–1755.
19 Hsiao, S.-H.; Lee, C.-T.; Chern, Y.-T. J Polym Sci Part A:
Polym Chem 1999, 37, 1619–1628.
20 Matheus, A. S.; Kim, I.; Ha, C.-S. Macromol Symp 2007,
249–250, 344–349.
21 Jensen, J. J.; Grimsley, M.; Mathias, L. J. J Polym Sci Part
A: Polym Chem 1996, 34, 397–402.
22 Pixton, M. R.; Paul, D. R. Polymer 1995, 36, 3165–3172.
23 Morisita, H.; Horoyuki, T.; Hamada, Y. U.S. Patent7,329,718,
2008.
24 de la Campa, J. G.; Guijarro, E.; Serna, F. J.; de Abajo, J.
REFERENCES AND NOTES
Eur Polym Mater 1985, 12, 1013–1019.
1 Preston, J. In Encyclopedia of Polymer Science and Technol-
ogy; Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G.;
Eds.; Wiley-Interscience: New York, 1988; Vol. 11, p 381.
25 (a) Yamazaki, N.; Higashi, F.; Kawabata, J. J Polym Sci
Polym Chem Ed 1974, 12, 2149–2155; (b) Yamazaki, N.; Matsu-
moto, M.; Higashi, F. J Polym Sci Polym Chem Ed 1975, 13,
1373–1380.
2 Alger, M. S. M. Dyson, R. W., Ed.; Thomson Science: London,
1998.
26 Preston, J. In Encyclopedia of Polymer Science and Tech-
nology; Mark, F. H.; Bikales, N. M., Eds.; InterScience: New
York, 1977; Supp. Vol. 2, p 84.
3 Lozano, A. E.; de Abajo, J.; de la Campa, J. G. J Polym Sci
Part A: Polym Chem 1993, 31, 1203–1210.
1750
INTERSCIENCE.WILEY.COM/JOURNAL/JPOLA