2544
F. A. Khan, S. Choudhury / Tetrahedron Letters 51 (2010) 2541–2544
Shan, M.-D.; Hu, L.-H.; Liu, S.-J.; Chen, Z.-L. Phytochemistry 2002, 59, 395–398;
Feldman, K. S.; Quideau, S.; Appel, H. M. J. Org. Chem. 1996, 61, 6656–6665; (s)
Perumal, P. T.; Bhatt, M. V. Synthesis 1980, 943–944.
17. (a) Tamura, Y.; Yakura, T.; Tohma, H.; Kikuchi, K.; Kita, Y. Synthesis 1989, 126–
127; (b) Snyder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 227–231.
18. Khan, F. A.; Choudhury, S. Eur. J. Org. Chem. 2006, 672–676.
(j) Guntern, A.; Ioset, J.-R.; Queiroz, E. F.; Foggin, C. M.; Hostettmann, K.
Phytochemistry 2001, 58, 631–635; (k) Miles, D. H.; Payne, M. Tetrahedron 2001,
57, 5769–5772; (l) D’Armas, H. T.; Mootoo, B. S.; Reynolds, W. F. J. Nat. Prod.
2000, 63, 1593–1595; (m) Harris, G. D., Jr.; Nguyen, A.; App, H.; Hirth, P.;
McMahon, G.; Tang, C. Org. Lett. 1999, 1, 431–433; (n) Mossa, J. S.; Muhammad,
I.; Ramadan, A. F.; Mirza, H. H.; El-Feraly, F. S.; Hufford, C. D. Phytochemistry
1999, 50, 1063–1068; (o) Papendorf, O. P.; Konig, G. M.; Wright, A. D.
Phytochemistry 1998, 49, 2383–2386; (p) Vanderlei, J. M. d. L.; Coelho, F.;
Almeida, W. P. Tetrahedron: Asymmetry 1997, 8, 2781–2785; (q) Almeida, W. P.;
Correia, C. R. D. Tetrahedron Lett. 1994, 35, 1367–1370; (r) Mahmood, U.;
Shukla, Y. N.; Thakur, R. S. Phytochemistry 1984, 23, 1725–1727.
19. General procedure for oxidation of tribromophenols 2 to dibromo-p-benzoquinone
derivatives
3.
Methyl
4,5-dibromo-3,6-dioxo-2-propylcyclohexa-1,4-
dienecarboxylate 3a: To a magnetically stirred heterogeneous mixture of PbO2
(98 mg, 0.41 mmol, 2 equiv) in acetone (2.6 mL) was added dropwise a solution
of 60% aq HClO4 (0.3 mL) followed by a solution of 2a (88 mg, 0.2 mmol) in
acetone (5.4 mL) over a period of 10 min at room temperature and the resulting
mixture was stirred for 2 h. After disappearance of the starting material (as
indicated by TLC monitoring) the reaction mixture was filtered through
Whatman filter paper to a conical flask containing water (2 mL) and the filter
cake was washed thoroughly with dichloromethane. The contents of the flask
were then transferred to a separatory funnel and the aqueous portion was
extracted with dichloromethane (3 Â 10 mL). The combined organic layers were
then washed first with water followed by brine and finally dried over anhydrous
Na2SO4. The solvent was evaporated under vacuo to leave a residue which was
chromatographed on silica gel (using 1–2% EtOAc in hexane) to afford the
quinone derivative 3a. Rf = 0.5 (5% EtOAc in hexane); yield: 53 mg; 72%, yellow
oil. 1HNMR(400 MHz, CDCl3):d3.86 (s, 3H, COOMe), 2.40 (t, J = 7.7 Hz, 2H), 1.52–
1.42 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3): d 177.1 (C@O),
174.6 (C@O), 163.5 (C@O of COOMe), 146.1, 139.8, 138.8, 136.9, 53.1, 30.9, 22.7,
14.2; IR (neat): 2900, 1720 (C@O), 1660 (C@O), 1560, 1420, 1240, 1140,
1080 cmÀ1. ESI-HRMS: m/z calcd for C11H11Br2O4 (M+H)+: 364.9024, found:
364.9023. Methyl 4,5-dibromo-2-butyl-3,6-dioxocyclohexa-1,4-dienecarboxylate
3b: Rf = 0.5 (5% EtOAc in hexane); yield: 70% from 2b, yellow oil. 1H NMR
(400 MHz, CDCl3): d 3.86 (s, 3H, COOMe), 2.42 (t, J = 7.8 Hz, 2H), 1.44–1.37 (m,
2H), 1.34–1.25 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3): d
177.1 (C@O), 174.6 (C@O), 163.5 (C@O of COOMe), 146.4, 139.8, 138.8, 136.7,
53.1, 31.3, 28.7, 22.8, 13.6; IR (neat): 2900, 1720 (C@O), 1660 (C@O), 1560, 1420,
1220, 1120, 1080 cmÀ1. ESI-HRMS: m/z calcd for C12H13Br2O4 (M+H)+: 378.9181,
4. Bruce, J. M. In The Chemistry of the Quinonoid Compounds; Patai, S., Ed.; John
Wiley and Sons: London, 1974; pp 465–538. Chapter 9.
5. Bentley, R.; Campbell, I. M. In The Chemistry of the Quinonoid Compounds; Patai,
S., Ed.; John Wiley and Sons: London, 1974; pp 683–736. Chapter 13.
6. Lee, I.-K.; Yun, B.-S.; Cho, S.-M.; Kim, W.-G.; Kim, J.-P.; Ryoo, I.-J.; Koshino, H.;
Yoo, I.-D. J. Nat. Prod. 1996, 59, 1090–1092.
7. Jonathan, L. T.; Che, C.-T.; Pezzuto, J. M.; Fong, H. S. S.; Farnsworth, N. R. J. Nat.
Prod. 1989, 52, 571–575.
8. Kinugawa, M.; Masuda, Y.; Arai, H.; Nishikawa, H.; Ogasa, T.; Tomioka, S.; Kasai,
M. Synthesis 1996, 633–636.
9. Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.; Zhang, Y.; Royo, I.; Vilella, D.; Diez,
M. T.; Pelaez, F.; Ruby, C.; Kendall, R. L.; Mao, X.; Griffin, P.; Calaycay, J.; Zierath,
J. R.; Heck, J. V.; Smith, R. G.; Moller, D. E. Science 1999, 284, 974–977.
10. Puder, C.; Wagner, K.; Vettermann, R.; Hauptmann, R.; Potterat, O. J. Nat. Prod.
2005, 68, 323–326.
11. Murata, T.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Maesato, M.;
Yamochi, H.; Saito, G.; Nakasuji, K. Angew. Chem., Int. Ed. 2004, 43, 6343–6346.
12. Nam, K. C.; Kang, S. O.; Jeong, H. S.; Jeon, S. Tetrahedron Lett. 1999, 40, 7343–
7346.
13. Becker, H.-D. In The Chemistry of the Quinonoid Compounds; Patai, S., Ed.; John
Wiley and Sons: London, 1974; pp 335–423. Chapter 7.
14. (a) Finley, K. In The Chemistry of the Quinonoid Compounds; Patai, S., Ed.; John
Wiley and Sons: London, 1974; pp 877–1144. Chapter 17; (b) Fringuelli, F.;
Taticchi, A. The Diels–Alder Reaction: Selected Practical Methods; John Wiley and
Sons, 2002.
15. (a) Iwasa, S.; Fakhruddin, A.; Widagdo, H. S.; Nishiyama, H. Adv. Synth. Catal.
2005, 347, 517–520; (b) Hammershøj, P.; Reenberg, T. K.; Pittelkow, M.;
Nielsen, C. B.; Hammerich, O.; Christensen, J. B. Eur. J. Org. Chem. 2006, 2786–
2794.
16. For various oxidizing agents used in the conversion of phenols to quinones,
see: (a) Brimble, M. A.; Duncalf, L. J.; Phythian, S. J. J. Chem. Soc., Perkin Trans. 1
1997, 1399–1403; (b) Fischer, A.; Henderson, G. N. Synthesis 1985, 641–643; (c)
Cherkaoui, O.; Nebois, P.; Fillion, H.; Domard, M.; Fenet, B. Tetrahedron 1996,
52, 9499–9508; (d) Musgrave, O. C. Chem. Rev. 1969, 69, 499–531; (e) Omura, K.
Synthesis 1998, 1145–1148; (f) Kim, D. W.; Choi, H. Y.; Lee, K.-J.; Chi, D. Y. Org.
Lett. 2001, 3, 445–447; (g) Boyd, V. A.; Sulikowski, G. A. J. Am. Chem. Soc. 1995,
117, 8472–8473; (h) Bozell, J. J.; Hoberg, J. O. Tetrahedron Lett. 1998, 39, 2261–
2264; (i) Itoh, S.; Ogino, M.; Haranou, S.; Terasaka, T.; Ando, T.; Komatsu, M.;
Ohshiro, Y.; Fukuzumi, S.; Kano, K.; Takagi, K.; Ikeda, T. J. Am. Chem. Soc. 1995,
117, 1485–1493; (j) Artaud, I.; Aziza, K. B.; Chopard, C.; Mansuy, D. J. Chem. Soc.,
Chem. Commun. 1991, 31–33; (k) Tomatsu, A.; Takemura, S.; Hashimoto, K.;
Nakata, M. Synlett 1999, 9, 1474–1476; (l) Saladino, R.; Neri, V.; Minicione, E.;
Filippone, P. Tetrahedron 2002, 58, 8493–8500; (m) Felpin, F.-X. Tetrahedron
Lett. 2007, 48, 409–412; (n) Tohma, H.; Morioka, H.; Harayama, Y.; Hashizume,
M.; Kita, Y. Tetrahedron Lett. 2001, 42, 6899–6902; (o) Kato, N.; Sugaya, T.;
Mimura, T.; Ikuta, M.; Kuge, Y.; Tomioka, S.; Kasai, M. Synthesis 1997, 625–627;
(p) Perumal, P. T.; Bhatt, M. V. Synthesis 1979, 205–206; (q) Murahashi, S.-I.;
Naota, T.; Miyaguchi, N.; Noda, S. J. Am. Chem. Soc. 1996, 118, 2509–2510; (r)
found:
378.9185.
Methyl
4,5-dibromo-3,6-dioxo-2-pentylcyclohexa-1,4-
dienecarboxylate 3c: Rf = 0.5 (5% EtOAc in hexane); yield: 70% from 2c, yellow
oil. 1HNMR (500 MHz, CDCl3):d3.91(s, 3H, COOMe), 2.46 (t, J = 7.9 Hz, 2H), 1.49–
1.46 (m, 2H), 1.32–1.29 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz,
CDCl3): d 177.2 (C@O), 174.8 (C@O), 163.6 (C@O of COOMe), 146.5, 139.9, 138.9,
136.8, 53.2, 31.9, 29.0, 28.9, 22.2, 13.9; IR (neat): 2900, 1720 (C@O), 1660 (C@O),
1560, 1420, 1220, 1120, 1080 cmÀ1. ESI-HRMS: m/z calcd for C13H15Br2O4
(M+H)+: 392.9337, found: 392.9335. Methyl 4,5-dibromo-3,6-dioxo-2-
hexylcyclohexa-1,4-dienecarboxylate 3d: Rf = 0.5 (5% EtOAc in hexane); yield:
72% from 2d, yellow oil. 1H NMR (500 MHz, CDCl3): d 3.92 (s, 3H, COOMe), 2.47 (t,
J = 7.9 Hz, 2H), 1.49–1.44 (m, 2H), 1.36–1.24 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H); 13C
NMR (125 MHz, CDCl3): d 177.1 (C@O), 174.6 (C@O), 163.5 (C@O of COOMe),
146.4, 139.7, 138.8, 136.6, 53.1, 31.2, 29.4, 29.2, 29.0, 22.4, 13.9; IR (neat): 2900,
1720 (C@O), 1660 (C@O), 1560, 1420, 1220, 1140, 1080 cmÀ1. ESI-HRMS: m/z
calcd for C14H17Br2O4 (M+H)+: 406.9494, found: 406.9490.
20. (a) Chambers, J. Q. In The Chemistry of the Quinonoid Compounds; Patai, S., Ed.;
John Wiley and Sons: London, 1974; pp 737–791. Chapter 14; (b) Shaidarova, L.
G.; Gedmina, A. V.; Budnikov, G. K. J. Anal. Chem. 2003, 58, 171–175; (c) Tang,
Y.; Wu, Y.; Wang, Z. J. Electrochem. Soc. 2001, 148, 133–138; (d) Gupta, N.;
Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384–6391; (e) Sasaki, K.; Kashimura,
T.; Ohura, M.; Ohsaki, Y.; Ohta, N. J. Electrochem. Soc. 1990, 137, 2437–2443.
21. Cyclic voltammetric studies were performed on a BAS Epsilon electrochemical
workstation in dichloromethane using 0.1 M nBu4NPF6 as the supporting
electrolyte. The reference electrode was Ag/AgCl and the concentrations of the
compounds were used in the order of 10À3 M. The ferrocene/ferrocenium
couple occurs at E1/2 = +0.45 (65)
experimental conditions.
V versus Ag/AgCl under the same