C O M M U N I C A T I O N S
was partly supported by the CK Integrated Medical Bioimaging
Project (MEXT) and CREST (Japan Science and Technology
Agency).
Supporting Information Available: Experimental details, Figures
S1-S7, and Schemes S1-S4. This material is available free of charge
References
(1) (a) Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142. (b) Kobayashi,
H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. ReV. 2010,
110, 2620.
(2) (a) Haugland, R. P. The Handbook: A Guide to Fluorescent Probes and
Labeling Technologies, 10th ed.; Invitrogen: Carlsbad, CA, 2005. (b) Gao,
W.; Xing, B.; Tsien, R. Y.; Rao, J. J. Am. Chem. Soc. 2003, 125, 11146.
(c) Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.;
Nagano, T.; Choyke, P. L.; Urano, Y. J. Am. Chem. Soc. 2007, 129, 3918.
(3) (a) Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.;
Feng, L.; Whitney, M.; Roemer, K.; Tsien, R. Y. Science 1998, 279, 84.
(b) Mizukami, S.; Kikuchi, K.; Higuchi, T.; Urano, Y.; Mashima, T.;
Tsuruo, T.; Nagano, T. FEBS Lett. 1999, 453, 356. (c) Takakusa, H.;
Kikuchi, K.; Urano, Y.; Sakamoto, S.; Yamaguchi, K.; Nagano, T. J. Am.
Chem. Soc. 2002, 124, 1653. (d) Pham, W.; Choi, Y.; Weissleder, R.; Tung,
C.-H. Bioconjugate Chem. 2004, 15, 1403.
Figure 3. Detection of several different proteins using turn-on fluorescent
probes. (a) Fluorescence spectral changes of probe 4 (10 µM) upon the
addition of trypsin (0-100 µM) in 50 mM HEPES buffer, 0.5 M NaCl
(pH 7.2) (λex ) 480 nm). The inset shows the fluorescence titration curve
(λem ) 575 nm). (b) Photographs showing the orthogonal, specific protein
detection of hCA, avidin, and trypsin using probes 1, 3, and 4, respectively.
The images were obtained with UV excitation (λex ) 365 nm). For detailed
conditions, see the Supporting Information.
(4) Lawrence, D. S.; Wang, Q. ChemBioChem 2007, 8, 373.
(5) Loving, G. S.; Sainlos, M.; Imperiali, B. Trends Biotechnol. 2010, 28, 73.
(6) (a) Oh, K. J.; Cash, K. J.; Plaxco, K. W. J. Am. Chem. Soc. 2006, 128,
14018. (b) Thurley, S.; Ro¨glin, L.; Seitz, O. J. Am. Chem. Soc. 2007, 129,
12693.
(7) Takaoka, Y.; Sakamoto, T.; Tsukiji, S.; Narazaki, M.; Matsuda, T.; Tochio,
H.; Shirakawa, M.; Hamachi, I. Nat. Chem. 2009, 1, 557. Also see the
accompanying paper: Azagarsamy, M. A.; Thayumanavan, S. Nat. Chem.
2009, 1, 523.
(8) (a) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.;
Kluwer Academic/Plenum: New York, 1999. (b) Ogawa, M.; Kosaka, N.;
Choyke, P. L.; Kobayashi, H. ACS Chem. Biol. 2009, 4, 535.
(9) (a) Taylor, P. W.; King, R. W.; Burgen, A. S. V. Biochemistry 1970, 9,
2638. (b) Winum, J.-Y.; Dogne´, J.-M.; Casini, A.; de Leval, X.; Montero,
J.-L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C. T. J. Med.
Chem. 2005, 48, 2121.
In summary, we have developed new fluorescent molecules that
detect specific proteins with turn-on fluorescence signals. The
switching mechanism is based on the self-assembly (fluorescence
off) and recognition-driven disassembly (fluorescence on) of
amphiphilic, ligand-tethered fluorophores. The probe design is
modular and thus applicable for specific detection of various
proteins, including enzymes and nonenzymatic proteins. It is
expected that not only the ligand motif but also the fluorophore
unit can be replaced with other fluorescent dyes with different
emission wavelengths. We anticipate that the present supramolecular
approach13 may facilitate the development of new protein-specific
switchable fluorescent probes that are useful for a wide range of
applications, such as diagnosis and molecular imaging. In addition,
along with widely used inorganic particles and polymer-based
assemblies, self-assembled aggregates formed by small organic
compounds may hold great promise as a new type of nanometer-
sized materials in the field of nanobiotechnology.
(10) From the concentration dependence of the fluorescence and DLS measure-
ments, the critical aggregation concentration for self-assembly of 1 was
found to be less than 2.5 µM.
(11) Green, N. M. Biochem. J. 1963, 89, 585.
(12) Talhout, R.; Villa, A.; Mark, A. E.; Engberts, J. B. F. N. J. Am. Chem.
Soc. 2003, 125, 10570.
(13) Recent important examples of supramolecular-disassembly-based protein-
sensing systems: (a) Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Science
2003, 301, 1884. (b) You, C.-C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.;
Kim, I.-B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M. Nat.
Nanotechnol. 2007, 2, 318. (c) Savariar, E. N.; Ghosh, S.; Gonza´lez, D. C.;
Thayumanavan, S. J. Am. Chem. Soc. 2008, 130, 5416. (d) Azagarsamy,
M. A.; Sokkalingam, P.; Thayumanavan, S. J. Am. Chem. Soc. 2009, 131,
14184. (e) Azagarsamy, M. A.; Yesilyult, V.; Thayumanavan, S. J. Am.
Chem. Soc. 2010, 132, 4550.
Acknowledgment. We thank Prof. Kenji Matsuda and Mr.
Takashi Hirose for help with DLS measurements and Dr. Masato
Ikeda for help with AFM measurements. K.M. and Y.T. acknowl-
edge JSPS Research Fellowships for Young Scientists. This work
JA101879G
9
J. AM. CHEM. SOC. VOL. 132, NO. 21, 2010 7293