Journal of the American Chemical Society
Page 4 of 5
to PdII gives rise to two lowest-energy isomers Ipro-R and Ipro-S. They
are followed by the two most favorable alkene insertion transition
states TSlinear(pro-R) and TSbranched(pro-S) that lead correspondingly to
the linear and branched products. Note that TSlinear(pro-R) is lower
than TSbranched(pro-S) by 4 kcal/mol in free energy. Thus, formation
of linear regioisomer is much more preferable than that of branched
isomer both kinetically and thermodynamically, in sharp contrast
to the reversed regioselectivity in the neocuproine-ligated PdII-
catalyzed Heck reaction.6 The heterogeneous system is more
complex, and further study is underway to uncover the detailed
mechanism of the excellent selectivity in heterogeneous system.
In conclusion, we have developed a highly linear-selective
oxidative Heck reaction of simple olefins by employing CMP
materials as a ligand. Because of the beneficial confinement effect
of the porous structure in CMP materials and the bifunctional
ligand feature (consists of C≡C and pyridine-N sites with proper
coordination geometric angle), this heterogeneous ligand displayed
very high selectivity toward a broad range of electronically
unbiased alkenes. The linear selectivity of CMP-1 is about 30 times
higher than that of bipyridine-based monomer ligand. This work
opens a new front of using CMP as an intriguing platform for
developing highly efficient catalysts in controlling the
regioselectivity of organic reactions.
(8) (a) Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc.
2011, 133, 19020. (b) Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc.
2013, 135, 1585.
(9) Tasker, S. Z.; Gutierrez, A. C.; Jamison, T. F. Angew. Chem. Int.
Ed. 2014, 53, 1858.
(10) (a) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem. Int. Ed. 2011,
50, 8753. (b) Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Chem.
Commun. 2014, 50, 4788. (c) Bildirir, H.; Paraknowitsch, J.; Thomas, A.
Chem. Eur. J. 2014, 20, 9543.
(11) (a) Li, A.; Lu, R.; Wang, Y.; Wang, X.; Han, K.; Deng, W. Angew.
Chem. Int. Ed. 2010, 49, 3330. (b) Chen, Q.; Luo, M.; Hammershøj, P.;
Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.-G.; Han, B.-H. J. Am. Chem.
Soc. 2012, 134, 6084.
(12) (a) Liu, X.; Xu, Y.; Jiang, D. J. Am. Chem. Soc. 2012, 134, 8738. (b)
Wu, K.; Guo, J.; Wang, C. Chem. Commun. 2014, 50, 695. (c) Gu, C.;
Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem. Int. Ed. 2014,
53, 4850.
(13) (a) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D. J. Am. Chem. Soc.
2011, 133, 17622. (b) Xiao, D.; Li, Y.; Liu, L.; Wen, B.; Gu, Z.; Zhang, C.;
Zhao, Y. Chem. Commun. 2012, 48, 9519.
(14) (a) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010,
132, 6742. (b) Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.;
Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang,
F.; Ma, Y. Adv. Mater. 2013, 25, 3443.
(15) (a) Du, X.; Sun, Y.; Tan, B.; Teng, Q.; Yao, X.; Su, C.; Wang, W.
Chem. Commun. 2010, 46, 970. (b) Chen, L.; Yang, Y.; Jiang, D. J. Am.
Chem. Soc. 2010, 132, 9138. (c) Jiang, J.; Wang, C.; Laybourn, A.; Hasell,
T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.;
Cooper, A. I. Angew. Chem. Int. Ed. 2011, 50, 1072. (d) Jiang, J.-X.; Li, Y.;
Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46,
8779. (e) Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela,
F. Angew. Chem. Int. Ed. 2013, 52, 1432. (f) Urakami, H.; Zhang, K.; Vilela,
F. Chem. Commun. 2013, 49, 2353. (g) Chen, L.; Yang, Y.; Guo, Z.; Jiang,
D. Adv. Mater. 2011, 23, 3149.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) (a) Enquist, P.-A.; Lindh, J.; Nilsson, P.; Larhed, M. Green Chem.
2006, 8, 338. (b) Yoo, K. S.; Yoon, C. H.; Jung, K. W. J. Am. Chem. Soc.
2006, 128, 16384. (c) Lindh, J.; Enquist, P.-A.; Pilotti, Å.; Nilsson, P.;
Larhed, M. J. Org. Chem. 2007, 72, 7957. (d) Park, C. P.; Kim, D.-P. J. Am.
Chem. Soc. 2010, 132, 10102.
(17) (a) Dupont, J.; Basso, N. R.; Meneghetti, M. R.; Konrath, R. A.
Organometallics 1997, 16, 2386. (b) Ebeling, G.; Meneghetti, M. R.;
Rominger, F.; Dupont, J. Organometallics 2002, 21, 3221. (c) Zanini, M.
L.; Meneghetti, M. R.; Ebeling, G.; Livotto, P. R.; Rominger, F.; Dupont, J.
Polyhedron 2003, 22, 1665. (d) Consorti, C. S.; Ebeling, G.; Rodembusch,
F.; Stefani, V.; Livotto, P. R.; Rominger, F.; Quina, F. H.; Yihwa, C.;
Dupont, J. Inorg. Chem. 2004, 43, 530.
(18) (a) Ohmiya, H.; Makida, Y.; Tanaka, T.; Sawamura, M. J. Am. Chem.
Soc. 2008, 130, 17276. (b) Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879. (c) Yao, B.; Liu, Y.;
Wang, M.-K.; Li, J.-H.; Tang, R.-Y.; Zhang, X.-G.; Denga, C.-L. Adv. Synth.
Catal. 2012, 354, 1069.
(19) (a) Kjellgren, J.; Aydin, J.; Wallner, O. A.; Saltanova, I. V.; Szabó,
K. J. Chem. Eur. J. 2005, 11, 5260. (b) Nielsen, D. K.; Doyle, A. G. Angew.
Chem. Int. Ed. 2011, 50, 6056. (c) Lu, X.-Y.; Yang, C.-T.; Liu, J.-H.; Zhang,
Z.-Q.; Lu, X.; Lou, X.; Xiao, B.; Fu, Y. Chem. Commun. 2015, 51, 2388.
(20) (a) Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc.
2008, 130, 11270. (b) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc.
2011, 133, 9692.
The authors declare no competing financial interests.
Financial support from National Natural Science Foundation of
China (Nos. 21272190 and 91545105), the Strategic priority
research program of the Chinese Academy of Sciences, Grant No
XDB17020400 and NFFTBS (No. J1310024).
(1) (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146. (b) Cabri, W.; Candiani,
I. Acc. Chem. Res. 1995, 28, 2. (c) Beletskaya, I. P.; Cheprakov, A. V. Chem.
Rev. 2000, 100, 3009. (d) Cartney, D. M.; Guiry, P. J. Chem. Soc. Rev. 2011,
40, 5122. (d) Oestreich, M. The Mizoroki-Heck Reaction; Wily-VCH:
Weinheim, Germany, 2009, pp 608.
(2) (a) Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751. (b) Mo,
J.; Xiao, J. Angew. Chem. Int. Ed. 2006, 45, 4152. (c) Ruan, J.; Iggo, J. A.;
Berry, N. G.; Xiao, J. J. Am. Chem. Soc. 2010, 132, 16689.
(3) (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989. (b) Jung,
Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K. W. Org. Lett. 2003, 5, 2231. (c)
Andappan, M. M. S.; Nilsson, P.; Larhed, M. Chem. Commun. 2004, 218.
(d) Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424.
(4) (a) Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133. (b)
Albéniz, A. C.; Espinet, P.; Martín-Ruiz, B.; Milstein, D. J. Am. Chem. Soc.
2001, 123, 11504. (c) Calò, V.; Nacci, A.; Monopoli, A.; Cotugno, P.
Angew. Chem. Int. Ed. 2009, 48, 6101.
(5) Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 13981.
(6) Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.
(7) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2012,
51, 5915.
4
ACS Paragon Plus Environment