Inorganic Chemistry
Article
114, 3659−3853. (b) Kosman, D. J. Multicopper oxidases: a workshop
on copper coordination chemistry, electron transfer, and metal-
lophysiology. J. Biol. Inorg. Chem. 2010, 15, 15−28. (c) Battaini, G.;
Granata, A.; Monzani, E.; Gullotti, M.; Casella, L. Biomimetic
oxidations by dinuclear and trinuclear copper complexes. Adv. Inorg.
Chem. 2006, 58, 185−233. (d) Rosenzweig, A. C. Bioinorganic
chemistry: zeroing in on a new copper site. Nat. Chem. 2009, 1, 684−
685.
(4) (a) Ferguson-Miller, S.; Babcock, G. T. Heme/copper terminal
oxidases. Chem. Rev. 1996, 96, 2889−2908. (b) Kaila, V. R. I.;
Verkhovsky, M. I.; Wikstrom, M. Proton-coupled electron transfer in
cytochrome oxidase. Chem. Rev. 2010, 110, 7062−7081.
(5) (a) Cracknell, J. A.; Vincent, K. A.; Armstrong, F. A. Enzymes as
working or inspirational electrocatalysts for fuel cells and electrolysis.
Chem. Rev. 2008, 108, 2439−2641. (b) Adler, S. B. Factors governing
oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004,
104, 4791−4844. (c) Markovic, N. M.; Schmidt, T. J.; Stamenkovic,
V.; Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic
surfaces: a selective review. Fuel Cells 2001, 1, 105−116.
(6) (a) Egami, H.; Oguma, T.; Katsuki, T. Oxidation catalysis of Nb
(salan) complexes: asymmetric epoxidation of allylic alcohols using
aqueous hydrogen peroxide as an oxidant. J. Am. Chem. Soc. 2010, 132,
5886−5895. (b) Hermans, I.; Spier, E. S.; Neuenschwander, U.; Turra,
N.; Baiker, A. Selective oxidation catalysis: opportunities and
challenges. Top. Catal. 2009, 52, 1162−1174.
(15) Wu, J.; Penner-Hahn, J. E.; Pecoraro, V. L. Structural,
spectroscopic, and reactivity models for the manganese catalases.
Chem. Rev. 2004, 104, 903−938.
(16) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal
structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.
Nature 2011, 473, 55−60.
(17) (a) Mullins, C. S.; Pecoraro, V. L. Reflections on small molecule
manganese models that seek to mimic photosynthetic water oxidation
chemistry. Coord. Chem. Rev. 2008, 252, 416−443. (b) Pecoraro, V. L.;
Baldwin, M. J.; Gelasco, A. Interaction of manganese with dioxygen
and its reduced derivatives. Chem. Rev. 1994, 94, 807−826.
(c) Signorella, S.; Hureau, C. Bioinspired functional mimics of the
manganese catalases. Coord. Chem. Rev. 2012, 256, 1229−1245.
(18) (a) Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L. Structural,
spectroscopic, and reactivity models for the manganese catalases.
Chem. Rev. 2004, 104, 903−938. (b) Young, K. J.; Brennan, B. J.;
Tagore, R.; Brudvig, G. W. Photosynthetic water oxidation: insights
from manganese model chemistry. Acc. Chem. Res. 2015, 48, 567−574.
(c) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.; Yano,
J.; Hendrich, M. P.; Borovik, A. S. High-spin Mn−oxo complexes and
their relevance to the oxygen-evolving complex within photosystem II.
Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5319−5324. (d) Shook, R. L.;
Peterson, S. M.; Greaves, J.; Moore, C.; Rheingold, A. L.; Borovik, A.
S. Catalytic reduction of dioxygen to water with a monomeric
manganese complex at room temperature. J. Am. Chem. Soc. 2011, 133,
5810−5817. (e) Triller, M. U.; Pursche, D.; Hsieh, W.-Y.; Pecoraro, V.
L.; Rompel, A.; Krebs, B. Catalytic Oxidation of 3,5-Di-tert-
butylcatechol by a Series of Mononuclear Manganese Complexes:
Synthesis, Structure, and Kinetic Investigation. Inorg. Chem. 2003, 42,
6274−6283.
(19) Abbreviations used: 3,5-di-tert-butylcatecholate (DBC); 3,5-di-
tert-butylsemiquinone (HDBSQ); 3,5-di-tert-butyl-o-benzoquinone
(DBQ); 3,5-di-tert-butyl-3-methoxy-6-oxocyclohexa-1,4-dienolate
(BMOD)−.
(20) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of
Laboratory Chemicals, 2nd ed.; Pergamon: Oxford, U.K., 1980.
(21) (a) Tshuva, E. Y.; Gendeziuk, N.; Kol, M. Single-step synthesis
of salans and substituted salans by Mannich condensation. Tetrahedron
Lett. 2001, 42, 6405−6407. (b) Tshuva, E. Y.; Goldberg, I.; Kol, M.;
Goldschmidt, Z. Zirconium complexes of amine-bis (phenolate)
ligands as catalysts for 1-hexene polymerization: peripheral structural
parameters strongly affect reactivity. Organometallics 2001, 20, 3017−
3028.
(7) (a) Fukuzumi, S.; Tahsini, L.; Lee, Y.-M.; Ohkubo, K.; Nam, W.;
Karlin, K. D. Factors that control catalytic two-versus four-electron
reduction of dioxygen by copper complexes. J. Am. Chem. Soc. 2012,
134, 7025−7035. (b) Kakuda, S.; Rolle, C. J.; Ohkubo, K.; Siegler, M.
A.; Karlin, K. D.; Fukuzumi, S. Lewis acid-induced change from four-to
two-electron reduction of dioxygen catalyzed by copper complexes
using scandium triflate. J. Am. Chem. Soc. 2015, 137, 3330−3337.
(c) Gennari, M.; Brazzolotto, D.; Pec
C. J.; DeBeer, S.; Retegan, M.; Pantazis, D. A.; Neese, F.; Rouzier
M.; Clerac, R.; Duboc, C. Dioxygen activation and catalytic reduction
́
aut, J.; Cherrier, M. V.; Pollock,
̀
es,
́
to hydrogen peroxide by a thiolate-bridged dimanganese(II) complex
with a pendant thiol. J. Am. Chem. Soc. 2015, 137, 8644−8653.
(8) (a) Biomimetic Oxidations Catalyzed by Transition Metal
Complexes; Meunier, B., Ed.; Imperial College Press: London, 2000.
(b) Oxygen Complexes and Oxygen Activation by Transition Metals;
Martell, A. E., Sawyer, D. T., Eds.; Plenum: New York, 1988.
(9) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Dioxygen
activation at mononuclear nonheme iron active sites: enzymes, models,
and intermediates. Chem. Rev. 2004, 104, 939−986. (b) Puri, M.; Que,
L., Jr. Toward the synthesis of more reactive S = 2 non-heme oxoiron
(IV) complexes. Acc. Chem. Res. 2015, 48, 2443−2452. (c) Nam, W.
High-valent iron (IV)−oxo complexes of heme and non-heme ligands
in oxygenation reactions. Acc. Chem. Res. 2007, 40, 522−531.
(10) (a) Hematian, S.; Garcia-Bosch, I.; Karlin, K. D. Synthetic
heme/copper assemblies: toward an understanding of cytochrome c
oxidase interactions with dioxygen and nitrogen oxides. Acc. Chem. Res.
2015, 48, 2462−2474. (b) Citek, C.; Herres-Pawlis, S.; Stack, T. D. P.
Low temperature syntheses and reactivity of Cu2O2 active-site models.
Acc. Chem. Res. 2015, 48, 2424−2433.
(22) Robinson, W. R. Perchlorate salts of metal ion complexes:
Potential explosives. J. Chem. Educ. 1985, 62, 1001.
(23) (a) Berreau, L. M.; Mahapatra, S.; Halfen, J. A.; Houser, R. P.;
Young, V. G., Jr.; Tolman, W. B. Reactivity of peroxo- and bis (μ-oxo)
dicopper complexes with catechols. Angew. Chem., Int. Ed. 1999, 38,
207−210. (b) Mahadevan, V.; DuBois, J. L.; Hedman, B.; Hodgson, K.
O.; Stack, T. D. P. Exogenous Substrate Reactivity with a
[Cu(III)2O2]2+ Core: Structural Implications. J. Am. Chem. Soc.
1999, 121, 5583−5584.
(24) Guha, A.; Chattopadhyay, T.; Paul, N. D.; Mukherjee, M.;
Goswami, S.; Mondal, T. K.; Zangrando, E; Das, D. Radical pathway in
catecholase activity with zinc-based model complexes of compartmen-
tal ligands. Inorg. Chem. 2012, 51, 8750−8759.
(25) Neves, A.; Rossi, L. M.; Bortoluzzi, A. J.; Szpoganicz, B.;
Wiezbicki, C.; Schwingel, E.; Haase, W.; Ostrovsky, S. Catecholase
activity of a series of dicopper (II) complexes with variable Cu-OH
(phenol) moieties. Inorg. Chem. 2002, 41, 1788−1794.
(26) Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT,
2004.
(11) Sigel, A.; Sigel, H. Manganese and its Role in Biological Processes.
Metal Ions in Biological Systems; Marcel Dekker: New York, 2000; Vol.
37.
(12) (a) Hamberg, M.; Su, C.; Oliw, E. Manganese lipoxygenase:
discovery of a bis-allylic hydroperoxide as product and intermediate in
a lipoxygenase reaction. J. Biol. Chem. 1998, 273, 13080−13088.
(b) Su, C.; Sahlin, M.; Oliw, E. H. Kinetics of manganese lipoxygenase
with a catalytic mononuclear redox center. J. Biol. Chem. 2000, 275,
18830−18835.
(13) Boal, A. K.; Cotruvo, J. A., Jr.; Stubbe, J.; Rosenzweig, A. C.
Structural basis for activation of class Ib ribonucleotide reductase.
Science 2010, 329, 1526−1530.
(14) Miller, A.-F. Superoxide dismutases: active sites that save, but a
protein that kills. Curr. Opin. Chem. Biol. 2004, 8, 162−168.
(27) Lovell, T.; Himo, F.; Han, W.-G.; Noodleman, L. Density
functional methods applied to metalloenzymes. Coord. Chem. Rev.
2003, 238-239, 211−232.
(28) Becke, A. D. Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys.
1988, 38, 3098−3100.
L
Inorg. Chem. XXXX, XXX, XXX−XXX