1744
T. Delaunay et al.
PRACTICAL SYNTHETIC PROCEDURES
HRMS (CI): m/z [M + H]+ calcd for C20H16NO2: 302.1181; found:
302.1177.
are simple and inexpensive, only requiring off-the-shelf
reagent–solvents.
Experimental Section
Acknowledgment
Commercially available reagents and solvents were used as pur-
chased. 1H and 13C NMR were recorded in CDCl3 with the solvent
resonance as the internal standard. Yields refer to spectroscopically
(1H and 13C NMR) homogeneous materials. Chromatography was
performed using Acros silica gel, 35–70 mm, 60A. Melting points
are uncorrected.
This research was assisted financially by Bayer CropScience and
the Centre National de la Recherche Scientifique.
References
(1) (a) Schnute, M. E.; Brideau, R. J.; Collier, S. A.; Cudahy, M.
M.; Hopkins, T. A.; Knechtel, M. L.; Oien, N. L.; Sackett, R.
S.; Scott, A.; Stephan, M. L.; Wathen, M. W.; Wieber, J. L.
Bioorg. Med. Chem. Lett. 2008, 18, 3856. (b) Brookings,
D.; Davenport, R. J.; Davis, J.; Galvin, F. C. A.; Lloyd, S.;
Mack, S. R.; Owens, R.; Sabin, V.; Wynn, J. Bioorg. Med.
Chem. Lett. 2007, 17, 562. (c) Blanchard, J. E.; Elowe, N.
H.; Huitema, C.; Fortin, P. D.; Cechetto, J. D.; Eltis, L. D.;
Brown, E. D. Chem. Biol. 2004, 11, 1445. (d) Butenschoen,
I.; Moeller, K.; Haensel, W. J. Med. Chem. 2001, 44, 1249.
(e) Chang, G.-J.; Wu, M.-H.; Chen, W.-P.; Kuo, S.-C.; Su,
M.-J. Drug Dev. Res. 2000, 50, 170. (f) Huang, A.-C.; Lin,
T.-P.; Kuo, S.-C.; Wang, J.-P. J. Nat. Prod. 1995, 58, 117.
(g) Prankerd, R. J.; Stella, V. J. Int. J. Pharm. 1989, 52, 71.
(2) Bossharth, E.; Desbordes, P.; Monteiro, N.; Balme, G. Org.
Lett. 2003, 5, 2441.
7-Benzyl-2-phenylfuro[2,3-b]pyridin-4(7H)-one (5a); Typical
Procedure
A soln of 1b (45 mg, 0.14 mmol) in glacial AcOH (1 mL) was added
to an appropriate small microwave process vial containing a mag-
netic stir bar. The vial was sealed with a Teflon septum and placed
into a Biotage InitiatorTM microwave cavity. After irradiation at 150
°C for 60 min and subsequent cooling of the vessel to 37 °C by the
unit, the mixture was concentrated in vacuo and the residue was pu-
rified by column chromatography (silica gel, EtOAc–EtOH, 95:5)
to give 5a (40 mg, 92%) as a solid; mp 127–132 °C. The synthesis
of 5a was also performed on a 1.5 mmol preparative scale (84% iso-
lated yield).
FT-IR (neat): 1639 cm–1 (C=O).
1H NMR (300 MHz): d = 5.31 (s, 2 H), 6.31 (d, J = 7.8 Hz, 1 H),
7.20–7.23 (m, 2 H), 7.30–7.35 (m, 3 H), 7.36–7.43 (m, 5 H), 7.64
(d, J = 7.3 Hz, 2 H).
13C NMR (75 MHz): d = 53.9, 101.8, 114.7, 115.4, 127.9, 128.6,
129.0, 129.1, 129.3, 129.4, 134.2, 134.6, 150.8, 153.5, 175.5.
HRMS (CI): m/z [M + H]+ calcd for C20H16NO2: 302.1181; found:
302.1184.
(3) Aillaud, I.; Bossharth, E.; Conreaux, D.; Desbordes, P.;
Monteiro, N.; Balme, G. Org. Lett. 2006, 8, 1113.
(4) Bossharth, E.; Desbordes, P.; Monteiro, N.; Balme, G.
Tetrahedron Lett. 2009, 50, 614.
(5) Conreaux, D.; Belot, S.; Desbordes, P.; Monteiro, N.;
Balme, G. J. Org. Chem. 2008, 73, 8619.
(6) Conreaux, D.; Delaunay, T.; Desbordes, P.; Monteiro, N.;
Balme, G. Tetrahedron Lett. 2009, 50, 614.
(7) Conreaux, D.; Bossharth, E.; Monteiro, N.; Desbordes, P.;
5-Benzyl-2-phenylfuro[3,2-c]pyridin-4(5H)-one (10); Typical
Procedure
A soln of 1b (45 mg, 0.14 mmol) in a mixture of DMF (1 mL) and
Et3N (2 mL) was added to an appropriate small microwave process
vial containing a magnetic stir bar. The vial was sealed with a
Teflon septum and placed into a Biotage InitiatorTM microwave cav-
ity. After irradiation at 180 °C for 120 min and subsequent cooling
of the vessel to 37 °C by the unit, the mixture was concentrated in
vacuo and the residue was purified by column chromatography (sil-
ica gel, EtOAc–cyclohexane, 20:80) to give 10 (27 mg, 63%) as a
solid; mp 165–170 °C. The synthesis of 10 was also performed on a
1.5 mmol preparative scale (58% isolated yield).
Vors, J.-P.; Balme, G. Org. Lett. 2007, 9, 271.
(8) For mechanistic insights into acid-induced desilylations of
silylacetylenes, see: Siehl, H.-U.; Kaufmann, F.-P.; Hori, K.
J. Am. Chem. Soc. 1992, 114, 9343.
(9) For a previous synthesis of this compound see: Bar, G.;
Parsons, A. F.; Thomas, C. B. Tetrahedron 2001, 57, 4719.
(10) It is likely that, due to steric congestion, the methoxy methyl
group in 2a is rotated out of the plane of the pyridinone ring
resulting in decreased stability to nucleophilic attack with
respect to 1a. This effect has often been invoked to explain
the high degree of selectivity observed in the cleavage of
polymethoxyarenes and is also expected to affect the rate of
demethylation of benzo-fused 4-methoxypyridin-2-ones
(quinolin-2-ones) like 3a. For leading references, see:
(a) Ahmad, R.; Saá, J. M.; Cava, M. P. J. Org. Chem. 1977,
42, 1228. (b) Jardon, P. W.; Vickery, E. H.; Pahler, L. F.;
Pourahmady, N.; Mains, G. J.; Eisenbraun, E. J. J. Org.
Chem. 1984, 49, 2130. (c) Carvalho, C. F.; Sargent, M. V.
Chem. Commun. 1984, 227.
FT-IR (neat): 1656 cm–1 (C=O).
1H NMR (400 MHz, CDCl3): d = 5.19 (s, 2 H), 6.50 (d, J = 9.0 Hz,
1 H), 7.29–7.12 (m, 8 H), 7.38–7.34 (m, 2 H), 7.69 (d, J = 8.8 Hz, 2
H).
13C NMR (100 MHz, CDCl3): d = 51.5, 96.3, 102.2, 118.5, 124.6,
128.0, 128.1, 128.6, 129.0, 129.9, 133.7, 137.0, 155.2, 159.0.
Synthesis 2010, No. 10, 1741–1744 © Thieme Stuttgart · New York