10 min), injector temperature: 280 ◦C, detector temperature:
300 ◦C. Measurement conditions GC-MSD: HP 5, 30 m ¥
0.32 mm ¥ 0.25 mm, He 10 psi, program: 70 ◦C (hold for 3 min),
15 K min-1 up to 280 ◦C (hold for 7 min), injector temperature:
280 ◦C, detector: EI (70 eV). NMR spectra were recorded with
a Bruker Avance 200 MHz system at room temperature in
deuterochloroform (CDCl3) as a solvent, using tetramethylsilane
as internal standard.
All product yields reported herein are calculated from GC-
data and are comparable with the isolated ones. Nevertheless,
the reported yields were corrected by means of different FID-
sensitivity for substrate and product. The reported yields are
mean values from at least two independent experimental runs.
Rantanen and C. Bolm, Adv. Synth. Catal., 2007, 349, 2213–2233;
(f) K. Tanaka and F. Toda, Solvent-Free Organic Synthesis, Wiley-
VCH, Weinheim, 2009; (g) G. Kaupp, CrystEngComm, 2009, 11,
388–403.
3 Recent examples: (a) B. Rodr´ıguez, T. Rantanen and C. Bolm, Angew.
Chem., Int. Ed., 2006, 45, 6924–6926 (Angew. Chem., 2006, 118, 7078–
7080); (b) B. Rodr´ıguez, A. Bruckmann and C. Bolm, Chem.–Eur. J.,
2007, 13, 4710–4722; (c) J. Mack and M. Shumba, Green Chem., 2007,
9, 328–330; (d) E. Colacino, P. Nun, F. M. Colacino, J. Martinez and
F. Lamaty, Tetrahedron, 2008, 64, 5569–5576; (e) P. R. Patil and
K. P. R. Kartha, J. Carbohydr. Chem., 2008, 27, 411–419; (f) R.
Trotzki, M. M. Hoffmann and B. Ondruschka, Green Chem., 2008,
10, 767–772; (g) D. C. Waddell and J. Mack, Green Chem., 2009, 11,
79–82; (h) P. R. Patil and K. P. R. Kartha, Green Chem., 2009, 11,
953–956.
4 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467–4470; (b) Y. Tohda, K. Sonogashira and N. Hagihara,
J. Chem. Soc., Chem. Commun., 1975, 54–55; (c) E. Negishi and L.
Anastasia, Chem. Rev., 2003, 103, 1979–2018; (d) K. C. Nicolaou,
P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4442–
4489 (Angew. Chem., 2005, 117, 4516–4563); (e) R. Chinchilla and
C. Najera, Chem. Rev., 2007, 107, 874–922; (f) H. Doucet and J.-C.
Hierso, Angew. Chem., Int. Ed., 2007, 46, 834–871 (Angew. Chem.,
2007, 119, 850–888); (g) M. M. Heravi and S. Sadjadi, Tetrahedron,
2009, 65, 7761–7775.
5 (a) U. H. F. Bunz, Y. Rubin and Y. Tobe, Chem. Soc. Rev., 1999, 28,
107–119; (b) Y. Li, J. Zhang, W. Wang, Q. Miao, X. She and X. Pan,
J. Org. Chem., 2005, 70, 3285–3287; (c) J. Cho, Y. Zhao and R. R.
Tykwinski, ARKIVOC, 2005, (iv), 142–150; (d) A. Bandyopadhyay,
B. Varghese, H. Hopf and S. Sankararaman, Chem.–Eur. J., 2007, 13,
3813–3821.
6 (a) W. Kabalka, L. Wang, V. Namboodiri and R. M. Pagni,
Tetrahedron Lett., 2000, 41, 5151–5154; (b) J. Yan, Z. Wang and
L. Wang, J. Chem. Res. (S), 2004, 71–73; (c) M. Wang, P. Li and L.
Wang, Synth. Commun., 2004, 34, 2803–2812; (d) C.-L. Deng, Y.-X.
Xie, D.-L. Yin and J.-H. Li, Synthesis, 2006, 3370–3376; (e) Y.-X. Xie,
C.-L. Deng, S.-F. Pi, J.-H. Li and D.-L. Yin, Chin. J. Chem., 2006,
24, 1290–1294; (f) Y. Liang, Y.-X. Xie and J.-H. Li, J. Org. Chem.,
2006, 71, 379–381; (g) A. Carpita and A. Ribecai, Tetrahedron Lett.,
2009, 50, 204–207.
7 (a) S. F. Nielsen, D. Peters and O. Axelson, Synth. Commun., 2000,
30, 3501–3509; (b) L. M. Klingensmith and N. E. Leadbeater,
Tetrahedron Lett., 2003, 44, 765–768; (c) F. Schneider and B.
Ondruschka, ChemSusChem, 2008, 1, 622–625; (d) F. Schneider, A.
Stolle, B. Ondruschka and H. Hopf, Org. Process Res. Dev., 2009, 13,
44–48; (e) F. Schneider, T. Szuppa, A. Stolle, B. Ondruschka and H.
Hopf, Green Chem., 2009, 11, 1894–1899.
8 (a) E. Tullberg, D. Peters and T. Frejd, J. Organomet. Chem., 2004,
689, 3778–3781; (b) E. Tullberg, F. Schacher, D. Peters and T. Frejd,
Synthesis, 2006, 1183–1189.
9 D. A. Fulmer, W. C. Shearouse, S. T. Medonza and J. Mack, Green
Chem., 2009, 11, 1821–1825.
10 R. Luque and D. J. Macquarrie, Org. Biomol. Chem., 2009, 7, 1627–
1632.
11 F. G. Calvo-Flores, ChemSusChem, 2009, 2, 905–919.
12 C. Suryanarayana, Prog. Mater. Sci., 2001, 46, 1–184; L. Takacs,
Prog. Mater. Sci., 2002, 47, 355–414; D. L. Zhang, Prog. Mater. Sci.,
2004, 49, 537–560.
Typical reaction procedure for the Sonogashira coupling
The grinding beakers (45 ml; agate or ZrO2) were equipped
with 6 milling balls of the same material (d = 15 mm).
Afterwards SiO2 (= fused quartz sand; 5 g), the acetylene com-
pound (2.5 mmol), 1,4-diazabicyclo[2.2.2]octane (= DABCO;
2.5 mmol, 280 mg), the aryl halide (2 mmol) and Pd(OAc)2
(5 mol%, 25 mg) were added in the given order. Milling was
carried out at 800 rpm for 20 min. After cooling of the grinding
beakers to room temperature (10 min), the crude products were
extracted on a frit with a thin silica layer using chloroform
(3 ¥ 10 ml). The solvent was evaporated in vacuum, the crude
products were dried, re-dissolved in 1.5 ml of chloroform and
analyzed by GC-FID and GC-MS.
Analytical samples for NMR investigations were isolated
by column chromatography using a n-hexane–toluene mixture
(1 : 1) as the eluent. Products were identified according to the
literature data. For the analytical details of the isolated products,
see the ESI.†
References
1 (a) P. T. Anastas and J. C. Warner, Green Chemistry: Theory
and Practice, Oxford University Press, Oxford, UK, 1998; (b) N.
Winterton, Green Chem., 2001, 3, G73–G75; (c) P. T. Anastas and J. B.
Zimmermann, Environ. Sci. Technol., 2003, 37, 94A–101A; (d) S. L. Y.
Tang, R. L. S. Smith and M. Poliakoff, Green Chem., 2005, 7, 761–
762; (e) P. Tundo, A. Perosa and F. Zecchini, Methods and Reagents
For Green Chemistry, John Wiley & Sons, Oxford, UK, 2007.
2 (a) J. O. Metzger, Angew. Chem., Int. Ed., 1998, 37, 2975–2978
(Angew. Chem., 1998, 110, 3145–3148); (b) R. S. Varma, Green Chem.,
1999, 1, 43–55; (c) K. Tanaka and F. Toda, Chem. Rev., 2000, 100,
1025–1074; (d) A. L. Garay, A. Pichon and S. L. James, Chem.
Soc. Rev., 2007, 36, 846–855; (e) B. Rodr´ıguez, A. Bruckmann, T.
This journal is
The Royal Society of Chemistry 2010
Green Chem., 2010, 12, 985–991 | 991
©