Research on thermal decomposition
of trinitrophloroglucinol salts by DSC, TG and DVST
of NH3•H2O is stronger than AG, so NH3•H2O reacts with the apparent activation energy is (ATZ)(H2TNPG)•2H2O
H3TNPG to form more stable salt. The DVST results < (CHZ)(HTNPG)•0.5H2O < NH4(H2TNPG) < (AG)
suggest that the crystal water content and the acid-base (H2TNPG). The thermal stability judged by the evolved
bonding strength are the key factors for the thermal gas amount of DVST is NH4(H2TNPG) > (AG)(H2TNPG)
stability evaluation of the H3TNPG-based salts. DVST > (CHZ)(HTNPG)•0.5H2O > (ATZ)(H2TNPG)•2H2O. The
can trace and exhibit the real-time changes of evolved stability depends on the interplay of three factors: the
gas amount and temperature caused by the thermal stability of the molecular configuration, the content of
decomposition, dehydration, phase transition, and crystal water, and the bonding strength of the acid-base
secondary reaction dynamically and directly, and can pairs. The different thermal analysis methods can fully
also evaluate the thermal stability and decomposition investigate the thermal decomposition of the H3TNPG-
kinetics. Therefore, DVST is a more sensitive and more based salts, which are important to explore their further
accurate method to quantify the evolved gas amount applications.
and to evaluate the thermal properties of materials than
VST.
Acknowledgement
4. Conclusions
This work was financially supported by the
Science and Technology Fund on Applied Physical
The thermal decomposition of the four H3TNPG-based Chemistry Laboratory (Nos. 9140C3703051105 and
salts was investigated under the complete reaction by 9140C370303120C37142), and the Key Support
DSC and TG, as well as under the low-extent reaction by Foundation of State Key Laboratory of Explosion
DVST. The kinetic parameters from different analysis Science and Technology (Nos. QNKT12-02 and YBKT
methods show a similar trend: the ascending order of 10-05).
References
[1]
[2]
[3]
[4]
[5]
V.Y. Egorshev, V.P. Sinditskii, V.L. Zbarsky, Theor.
Pract. Energ. Mater. 5, 30 (2003)
Angew. Chem. Int. Edit. 44, 5188 (2005)
Y. Huang, H. Gao, B. Twamley, J.M. Shreeve,
Chem. Eur. J. 15, 917 (2009)
M.J. Crawford, T.M. Klapoetke, F.A. Martin,
C.M. Sabate, M. Rusan, Chem. Eur. J. 17, 1683
(2011)
S. Chiba, Synlett 23, 21 (2012)
H.Y. Chen, T.L. Zhang, J.G. Zhang, Chin. J. Struct.
Chem. 24, 973 (2005).
H.Y. Chen, T.L. Zhang, J.G. Zhang, Chin. J. Chem.
23, 963 (2005).
H.Y. Chen, T.L. Zhang, X.J. Qiao, L. Yang,
J.G. Zhang, K.B. Yu, Chin. J. Inorg. Chem. 22, 1852
(2006)
H.Y. Chen, T.L. Zhang, J.G. Zhang, X.J. Qiao,
K.B. Yu, J. Hazard. Mater. 129, 31 (2006)
H.Y. Chen, T.L. Zhang, J.G. Zhang, L. Yang,
J.Y. Guo, Struct. Chem. 17, 445 (2006)
H.Y. Chen, T.L. Zhang, J.G. Zhang, L. Yang,
X.J. Qiao, Chin. J. Chem. 25, 59 (2007)
L.Q. Wang, H.Y. Chen, T.L. Zhang, J.G. Zhang,
L. Yang, J. Hazard. Mater. 147, 576 (2007)
L.H. Li, T.L. Zhang, J.G. Zhang, C.N. Sun, Chin.
J. Energ. Mater. 15, 228 (2007) (in Chinese)
Y. Cui, T.L. Zhang, J.G. Zhang, X.C. Hu, J. Zhang,
H.S. Huang, Chin. J. Chem. 26, 426 (2008)
X.C. Hu, T.L. Zhang, X.J. Qiao, L. Yang, J.G. Zhang,
[14]
[15]
Mehilal, N. Sikder, A.K. Sikder, D.V. Survase,
J.P. Agrawal, Ind. J. Eng. Mater. Sci. 11, 59 (2004)
J.J. Wolff, S.F. Nelsen, D.R. Powell, J.M. Desper,
Chemische Berichte 124, 1727 (1991)
J.J. Wolff, F. Gredel, H. Irngartinger, T. Dreier, Acta
Crystallogr. C. 52, 3225 (1996)
V.P. Sinditskii, A.I. Levshenkov, V.V. Kravchenko,
V.P. Shelaputina, Rus. J. Phys. Chem. B 3, 46
(2009)
[16]
[17]
[18]
[19]
[6]
W.F. Liu, V.P. Sinditskii, V.Y. Egorsev, Initiat.
Pyrotech. 34 (2003)
[7]
M.H.V. Huynh, M.A. Hiskey, T.J. Meyer, M. Wetzler,
P. Natl. Acad. Sci. USA. 103, 5409 (2006)
M.H.V. Huynh, M.D. Coburn, T.J. Meyer, M. Wetzler,
P. Natl. Acad. Sci. USA. 103, 10322 (2006)
H.Y. Chen, T.L. Zhang, J.G. Zhang, K.B. Yu, Initiat.
Pyrotech. 13 (2005)
H.S. Huang, T.L. Zhang, J.G. Zhang, X.C. Hu,
L. Yang, X.J. Qiao, Acta Chimi. Sinica 66, 847
(2008)
L.H. Li, T.L. Zhang, J.G. Zhang, C.N. Sun, Chin.
J. Energ. Mater. 16, 9 (2008) (in Chinese)
Q. Zhang, X.J. Qiao, J.G. Zhang, X.L. Zuo, Acta
Phys. Chim. Sinica 25, 1081 (2009)
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[8]
[9]
[10]
[11]
[12]
[13]
S. Brase, C. Gil, K. Knepper, V. Zimmermann,
780