pubs.acs.org/joc
also not atom-economic, which limited its use. The VA reac-
Asymmetric Direct Vinylogous Aldol Reaction of
Unactivated γ-Butenolide to Aldehydes
tion of γ-butenolides5,6 could overcome such shortcoming
and directly afford hydroxyl-γ-butenolides (Scheme 1, eq 2).
However, γ-butenolides were infrequently investigated owing
to their low reactivity. Most recently, Terada et al. reported
the enantioselective VA reaction of aldehydes.6e Halo sub-
stituent(s) of 2(5H)-furanone were used to improve nucleo-
philicity at the γ-position and prevent the reaction at the
R-position. When nonsubstituted furanone was used, the
reaction only provided complex mixtures. To the best of our
knowledge, the enantioselective direct VA reaction of unacti-
vated γ-butenolides has not yet been reported. Herein, we
wish to describe the asymmetric VA reaction of γ-buteno-
lides catalyzed by a quinine-derived thiourea organocatalyst,
affording the corresponding products in up to 93% yield,
85:15 anti/syn, and 83% ee.
Yang Yang, Ke Zheng, Jiannan Zhao, Jian Shi, Lili Lin,
Xiaohua Liu, and Xiaoming Feng*
Key Laboratory of Green Chemistry & Technology, Ministry
of Education, College of Chemistry, Sichuan University,
Chengdu 610064, China
Received May 14, 2010
Chiral bifuctional thioureas7 are a type of organocatalysts
that combine a basic nitrogen with a readily tunable hydrogen-
bonding group, which have emerged as powerful tools for
asymmetric construction of chiral molecules. Accordingly,
our initial investigation began with screening chiral diamine
derived thioureas 1a-d (Figure 1). In the presence of 1a, the
reaction of γ-butenolide 2 and benzaldehyde 3a in Et2O at
30 °C afforded only a trace amount of 4a (Table 1, entry 1).
Then we synthesized thiourea 1b from cyclohexane diamine,
which promoted the reaction with 30% yield, 63:37 anti/syn,
and 76% ee of the anti product (Table 1, entry 2).8 How-
ever, when 1c, possessing two bulky ethyl groups at the
The asymmetric direct vinylogous aldol reaction of un-
activated γ-butenolide with aldehydes has been deve-
loped, giving the corresponding 5-(10-hydroxy)butenolide
derivatives in high yields (up to 93%) and enantioselec-
tivities (up to 83% ee) under mild conditions.
(4) For a review on the vinylogous aldol reaction in butenolide synthesis,
see: Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000,
100, 1929. For recent examples of enantioselective catalyzed aldol reactions
ꢀ
of 2-silyloxyfurans, see: (a) Szlosek, M.; Figadere, B. Angew. Chem., Int. Ed.
2000, 39, 1799. (b) Matsuoka, Y.; Irie, R.; Katsuki, T. Chem. Lett. 2003, 32,
584. (c) Onitsuka, S.; Matsuoka, Y.; Irie, R.; Katsuki, T. Chem. Lett. 2003,
32, 974. (d) Palombi, L.; Acocella, M. R.; Celenta, N.; Massa, A.; Villano, R.;
Scettri, A. Tetrahedron: Asymmetry 2006, 17, 3300. (e) Nagao, H.; Yamane,
Y.; Mukaiyama, T. Chem. Lett. 2007, 36, 8. (f) Sedelmeier, J.; Hammerer, T.;
Bolm, C. Org. Lett. 2008, 10, 917. (g) Frings, M.; Atodiresei, I.; Wang, Y.;
Runsink, J.; Raabe, G.; Bolm, C. Chem.;Eur. J. 2010, 16, 4577. (h) Zhu, N.;
Ma, B.; Zhang, Y.; Wang, W. Adv. Synth. Catal. 2010, 352, 1291.
(5) For direct use of γ-butenolides in racemic aldol reactions, see:
(a) Pohmakotr, M.; Tuchinda, P.; Premkaisorn, P.; Reutrakul, V. Tetra-
hedron 1998, 54, 11297. (b) Saito, S.; Shiozawa, M.; Yamamoto, H. Angew.
Chem., Int. Ed. 1999, 38, 1769. (c) Bella, M.; Piancatelli, G.; Squarcia, A.
Tetrahedron 2001, 57, 4429. (d) Sarma, K. D.; Zhang, J.; Curran, T. T. J. Org.
Chem. 2007, 72, 3311.
(6) For direct catalytic asymmetric vinylogous reactions of γ-butenolides,
see: (a) Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10,
2319. (b) Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572. (c) Zhang,
Y.; Yu, C.; Ji, Y.; Wang, W. Chem. Asian J. 2010, 5, 1303. (d) Wang, J.; Qi, C.; Ge,
Z.; Cheng, T.; Li, R. Chem. Commun. 2010, 46, 2124. (e) Ube, H.; Shimada, N.;
Terada, M. Angew. Chem., Int. Ed. 2010, 49, 1858. (f) Cui, H.; Huang, J.; Lei, J.;
Wang, Z.; Chen, S.; Wu, L.; Chen, Y. Org. Lett. 2010, 12, 720. For direct catalytic
asymmetric vinylogous reaction of R,β-unsaturated γ-butyrolactams, see:
(g) Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2010, 132, 3666.
The 5-(10-hydroxy)-γ-butenolide subunits are frequently
found in biologically active natural products, such as
Nafuredin-γ1 and Lembertellols A and B.2 Many protocols
have been developed successfully for the formation of this
linchpin.3 Thus the synthesis of such compounds has at-
tracted significant attention. Recently, catalytic vinylogous
aldol (VA) reactions were described to be one of the most
efficient methods for the construction of 5-membered fur-
anone derivatives.4 2-Silyoxyfuran, which was synthesized
from γ-butenolides, was the general nucleophilic reagent in
the reactions (Scheme 1, eq 1). But it was hard to store and
(1) (a) Nagamitsu, T.; Takano, D.; Shiomi, K.; Ui, H.; Yamaguchi, Y.;
Masuma, R.; Harigaya, Y.; Kuwajima, I.; Oh mura, S. Tetrahedron Lett. 2003,
44, 6441. (b) Nagamitsu, T.; Takano, D.; Seki, M.; Arima, S.; Ohtawa, M.;
Shiomi, K.; Harigaya, Y.; Oh mura, S. Tetrahedron 2008, 64, 8117.
(2) (a) Murakami, T.; Takahashi, Y.; Fukushi, E.; Kawabata, J.;
Hashimoto, M.; Okuno, T.; Harada, Y. J. Am. Chem. Soc. 2004, 126,
9214. (b) Murakami, T.; Morikawa, Y.; Hashimoto, M.; Okuno, T.; Harada,
Y. Org. Lett. 2004, 6, 157. (c) Nomiya, M.; Murakami, T.; Takada, N.;
Okuno, T.; Harada, Y.; Hashimoto, M. J. Org. Chem. 2008, 73, 5039.
(3) For selected examples of total synthesis of furanaone derivatives, see:
(a) Kumar, P.; Naidu, S. V.; Gupta, P. J. Org. Chem. 2005, 70, 2843. (b)
Ahmed, Md. M.; Cui, H.; O0Doherty, G. A. J. Org. Chem. 2006, 71, 6686. (c)
Matsuura, D.; Takabe, K.; Yoda, H. Tetrahedron Lett. 2006, 47, 1371. (d)
Ferrie, L.; Reymond, S.; Capdevielle, P.; Cossy, J. Synlett 2007, 18, 2891.
(7) For recent reviews of bifunctional amine-thiourea mediated catalysis,
see: (a) Tian, S.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc.
Chem. Res. 2004, 37, 621. (b) Takemoto, Y. Org. Biomol. Chem. 2005, 3,
4299. (c) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(d) Connon, S. J. Chem.;Eur. J. 2006, 12, 5418. (e) Marcelli, T.; van
Maarseveen, J.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 7496.
(f) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. (g) Connon,
S. J. Chem. Commun. 2008, 2499. (h) Akiyama, T. Chem. Rev. 2007, 107,
5744.
(8) Absolute configurations were determined by conversion to known
compound. See the Supporting Information for details.
5382 J. Org. Chem. 2010, 75, 5382–5384
Published on Web 06/30/2010
DOI: 10.1021/jo100946d
r
2010 American Chemical Society