Organometallics 2010, 29, 3231–3234 3231
DOI: 10.1021/om100536g
Square-Planar Palladium Complexes with Trans Di- and
Tribenzylphosphine Ligands Bearing O(CH2)4CHdCH2 Substituents;
Two- and Three-Fold Intramolecular Ring-Closing Metatheses
Jun Han,† Chao Deng,† Ru Fang,† Deyang Zhao,† Leyong Wang,*,† and
John A. Gladysz*,‡
†Key Laboratory of Mesoscropic Chemistry of Ministry of Education, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210093, People’s Republic of China, and Department
‡
of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012
Received May 31, 2010
Summary: When trans-PdCl2{PPhn[CH2C6H4O(CH2)4CHd
CH2]3-n}2, with ortho or meta C6H4 linkages and n = 0, 1
(tribenzyl- or dibenzylphenylphosphine cores), are treated with
Grubbs’ catalyst and then H2/PtO2, the macrocycles trans-
directed syntheses of numerous types of architecturally
sophisticated complexes.1-5 However, many of these break-
throughs were first reached by “trial and error”, and hence
further advances require ongoing empirical studies. In pre-
vious efforts, the principal authors reported that the square-
planar palladium and platinum bis(phosphine) dichloride
complexes trans-MCl2(P((CH2)nCHdCH2)3)2 (M/n = Pt/6,
Pt/8, Pd/6; see I in Scheme 1), as well as Rh(CO)(Cl)
analogues, underwent 3-fold intramolecular interligand al-
kene metatheses to yield, after hydrogenations, gyroscope-
like molecules with three-spoke di(trialkyl)phosphine cages
or “stators” (IV).5b,d It was also established that the para-
substituted triarylphosphine complexes trans-Rh(CO)(Cl)-
[P(p-C6H4O(CH2)nCHdCH2)3]2 (n = 5, 6) underwent simi-
lar conversions to “giant” gyroscope-like molecules with
di(triaryl)phosphine stators (V).5c In all of these efforts,
there was a surprising absence of products of the type III,
principally derived by intraligand metathesis.
PdCl2{P[CH2-o-C6H4O(CH2)10O-o-C6H4CH2][CH2-o-C6H4-
O(CH2)10O-o-C6H4)CH2]P[CH2-o-C6H4O(CH2)10O-o-C6H4C-
H2]}, trans-PdCl2{PPh[CH2C6H4O(CH2)10OC6H4 CH2]}2
(o- or m-C6H4), and trans-PdCl2{PPh[CH2-m-C6H4O(CH2)10-
O-m-C6H4CH2]2PhP} are isolated in high yields.
It is now well established that alkene metatheses can be
effected in a variety of metal coordination spheres, enabling
We wondered whether such macrocyclizations could be
extended to group 10 metals and tribenzylphosphine- and
dibenzylphenylphosphine-based ligands that feature O(CH2)4-
CHdCH2 substituents ortho or meta to the benzylic carbon
atoms. These would possess additional conformational degrees
of freedom, which could possibly lead to different selecti-
vities and/or higher fractions of oligomeric products. Also,
tribenzylphosphine is sterically and electronically intermediate
between PPh3 and PCy3.6 In this communication, we describe
intramolecular alkene metatheses of complexes of the formula
trans-PdCl2{PPhn[CH2C6H4O(CH2)4CHdCH2]3-n}2, in which
the CC6H4O linkages can be ortho or meta and n can be 0 or 1.
Interestingly, these systems exhibit a distinct preference for
macrocyclizations involving intraligand metathesis and give
little or no di- or polypalladium byproducts. They further-
more generate novel ditertiary diphosphines that would be
otherwise very difficult to prepare and for which the possibi-
lity of facile decomplexation has been demonstrated.5b
*To whom correspondence should be addressed. Tel/e-mail: þ86-
25-8359-7090/lywang@nju.edu.cn (L.W.); 979 845-1399/gladysz@mail.
chem.tamu.edu (J.A.G.).
(1) Bauer, E. B.; Gladysz, J. A. In Handbook of Metathesis; Grubbs,
R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; Vol. 2, pp 403-431.
(2) (a) Chambron, J.-C.; Collin, J.-P.; Heitz, V.; Jouvenot, D.; Kern,
J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem.
2004, 1627 (review of work by this group). (b) Frey, J.; Kraus, T.; Heitz, V.;
Sauvage, J.-P. Chem. Eur. J. 2007, 13, 7585.
(3) Representative leading references: (a) Martinez, V.; Blais, J.-C.;
Bravic, G.; Astruc, D. Organometallics 2004, 23, 861. (b) Chase, P. A.;
Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. J. Mol. Catal. A
2006, 254, 2. (c) Song, K. H.; Kang, S. O.; Ko, J. Chem. Eur. J. 2007, 13,
5129. (d) Zheng, X.; Jones, C. W.; Weck, M. J. Am. Chem. Soc. 2007, 129,
1105. (e) Fuller, A.-M. L.; Leigh, D. A.; Lusby, P. J. Angew. Chem., Int. Ed.
2007, 46, 5015; Angew. Chem. 2007, 119, 5103. (f) Chen, W.-Z.;
Protasiewicz, J. D.; Davis, S. A.; Updegraff, J. B.; Ma, L.-Q.; Fanwick,
P. E.; Ren, T. Inorg. Chem. 2007, 46, 3775. (g) Sivaramakrishna, A.; Su, H.;
Moss, J. R. Angew. Chem., Int. Ed. 2007, 46, 3541; Angew. Chem. 2007,
119, 3611. (h) Asada, Y.; Yasuda, Y.; Yorimitsu, H.; Oshima, K.
Organometallics 2008, 27, 6050. (i) Alhomaidan, O.; Bai, G.; Stephan,
D. W. Organometallics 2008, 27, 6343. (j) Youm, K.-T.; Nguyen, S. T.;
Hupp, J. T. Chem. Commun. 2008, 3375. (k) Buchowicz, W.; Szmajda, M.
Organometallics 2009, 28, 6838. (l) Hiraoka, S.; Yamauchi, Y.; Arakane, R.;
Shionoya, M. J. Am. Chem. Soc. 2009, 131, 11646.
(5) (a) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed.
2004, 43, 5537; Angew. Chem. 2004, 116, 5653. (b) Nawara, A. J.; Shima,
T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962. (c)
Wang, L.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2006, 45,
4372; Angew. Chem. 2006, 118, 4479. (d) Wang, L.; Shima, T.; Hampel,
F.; Gladysz, J. A. Chem. Commun. 2006, 4075. (e) Hess, G.; Hampel, F.;
Gladysz, J. A. Organometallics 2007, 26, 5129. (f) Skopek, K.; Gladysz,
J. A. J. Organomet. Chem. 2008, 693, 857.
(4) (a) Ruwwe, J.; Martın-Alvarez, J. M.; Horn, C. R.; Bauer, E. B.;
´
Szafert, S.; Lis, T.; Hampel, F.; Cagle, P. C.; Gladysz, J. A. Chem. Eur. J.
2001, 7, 3931. (b) Bauer, E. B.; Hampel, F.; Gladysz, J. A. Organometallics
2003, 22, 5567. (c) Shima, T.; Bauer, E. B.; Hampel, F.; Gladysz, J. A. Dalton
Trans. 2004, 1012. (d) Lewanzik, N.; Oeser, T.; Bl€umel, J.; Gladysz, J. A. J. Mol.
Catal. A 2006, 254, 20. (e) de Quadras, L.; Bauer, E. B.; Mohr, W.; Bohling, J. C.;
Peters, T. B.; Martin-Alvarez, J.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc.
2007, 129, 8296. (f) de Quadras, L.; Bauer, E. B.; Stahl, J.; Zhuravlev, F.; Hampel,
F.; Gladysz, J. A. New J. Chem. 2007, 31, 1594. (g) Skopek, K.; Barbasiewicz,
M.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2008, 47, 3474.
(6) Landaeta, V. R.; Peruzzini, M.; Herrera, V.; Bianchini, C.;
ꢀ
Sanchez-Delgado, R. A.; Goeta, A. E.; Zanobini, F. J. Organomet.
Chem. 2006, 691, 1039.
r
2010 American Chemical Society
Published on Web 07/08/2010
pubs.acs.org/Organometallics