J. Yang et al. / Bioorg. Med. Chem. 18 (2010) 5032–5038
5037
5.4.5. 3-(3-Fluoro-4-hydroxyphenyl)-N-phenethyl-acrylamide
(4e)
peroxide for 1 h at 37 °C. The hydrogen peroxide was then removed.
The cells were washed once with MCDB 131 media, and were then
incubated in complete MCDB 131 media for 18 h at 37 °C. Following
the 18 h period, the cells were treated with 10% CellTiter-BlueÒ solu-
tion and analyzed for viability. In the dose–response cytoprotection
assay, percent cytoprotection for each compound was calculated by
subtracting the average fluorescent reading of the negative control
(HUVEC treated only with DMSO and hydrogen peroxide) from the
fluorescent values of each well. This was then divided by the average
fluorescence of the positive control (HUVEC treated only with
DMSO) to obtain percent cytoprotection.
This process afforded 90 mg of 4e (8% overall yield from 3-flu-
oro-4-hydroxybenzaldehyde) as a yellow foam with a 3:1 (E)-/
(Z)-isomer ratio by 1H NMR: 1H NMR (CDCl3) d (ppm) major iso-
mer: 2.91 (t, J = 6.9 Hz, 2H), 3.68 (q, J = 6.1 Hz, 2H), 5.66 (s, 1H),
6.18 (d, J = 15.6 Hz, 1H), 7.00 (t, J = 8.5 Hz, 1H), 7.12 (d, J = 8.5 Hz,
1H), 7.18 (d, J = 1.8 Hz, 1H), 7.28 (m, 5H), 7.52 (d, J = 15.6 Hz,
1H); 13C NMR (CDCl3) d: 35.80, 41.30, 114.85 (JC–F = 19 Hz),
118.31, 118.66, 125.50, 126.95 (JC–F = 20 Hz), 127.18, 128.92,
128.99, 138.89, 140.85, 146.99 (JC–F = 14 Hz), 151.86 (JC–F
241 Hz), 167.13; CI-MS m/z 286 (MH+, 100). HRCI-MS: Calcd for
17H17NO2F; 286.1243. Found: 286.1242.
=
C
5.8. Statistical analysis
5.4.6. 3-(2-Fluoro-4,5-dimethoxyphenyl)-N-phenethyl-acrylamide
(4f)
Data are reported as means standard deviation as a percent-
age of the control. Differences between the groups were first ana-
lyzed by ANOVA, and then evaluated by the Tukey-Kramer post
hoc analysis. O’Brien’s and Bartlett’s tests showed that variances
were equal among groups. P <0.05 was considered significant. All
statistical analysis was performed using the JMP program (SAS).
Recrystallization from EtOAc and hexane gave 48 mg of 4f (63%
yield from 2-fluoro-4,5-dimethoxybenzaldehyde) as white crys-
tals: mp 149 °C; 1H NMR (CDCl3) d (ppm): 2.92 (t, J = 6.9 Hz, 2H),
3.68 (q, J = 6.5, 2H), 3.88 (d, J = 8.7, 6H), 5.90 (br s, 1H), 6.38 (d,
J = 15.6 Hz, 1H), 6.64 (d, J = 12.0, 1H), 6.90 (d, J = 7.20 Hz, 1H),
7.29 (m, 5H), 7.66 (d, J = 15.6 Hz, 1H); 13C NMR (CDCl3): d 35.93,
Acknowledgments
41.09, 56.53 (JC–F = 9.96 Hz), 100.45 (JC–F = 28 Hz), 110.54 (JC–F
=
4 Hz), 114.01 (JC–F = 13 Hz), 121.15 (JC–F = 7 Hz), 126.77, 128.99
(JC–F = 11 Hz), 134.03, 139.15, 145.67, 151.41 (JC–F = 10 Hz),
156.54 (JC–F = 248 Hz), 166.40; CI-MS m/z 330 (MH+, 100). HRCI-
MS: Calcd for C19H21NO3F; 330.1505. Found: 330.1506; elemental
Anal. Calcd for C19H20NO3F: C, 69.29; H, 6.12; N, 4.25. Found: C,
69.03; H, 6.12; N, 4.21.
This project was supported by the US Army Institute of Surgical
Research, the Robert Welch Foundation (F-1298 and H-F-0032) and
the TI-3D.
Supplementary data
5.5. Cell culture
Supplementary data associated with this article can be found, in
Human umbilical vein endothelial cells (HUVEC) were obtained
from Lifeline Technologies (Walkersville, MD) and cultivated on
75 cm2 1% gelatin coated culture flasks using MCDB 131 cell cul-
ture media (Invitrogen, Carlsbad CA) supplemented with 2% fetal
bovine serum, ascorbic acid, heparin, VEGF, hydrocortisone bFGF
and heparin (Lifeline Technologies). The cells were grown to con-
fluency at 37 °C in humidified atmosphere with 5% CO2. HUVEC
were then treated with Trypsin/EDTA and subcultivated onto gela-
tin coated 96 well multi-plates and used when confluent. Popula-
tion doubling levels 2 through 5 were used in the described
experiments.
References and notes
1. Kondo, T.; Hirose, M.; Kageyama, K. J. Atheroscler. Thromb. 2009, 16, 532.
2. Kobayashi, S.; Inoue, N.; Azumi, H.; Seno, T.; Hirata, K.; Kawashima, S.;
Hayashi, Y.; Itoh, H.; Yokozaki, H.; Yokoyama, M. J. Atheroscler. Thromb.
2002, 9, 184.
3. Robin, E.; Guzy, R. D.; Loor, G.; Iwase, H.; Waypa, G. B.; Marks, J. D.; Hoek, T. L.;
Schumacker, P. T. J. Biol. Chem. 2007, 282, 19133.
4. Jaeschke, H.; Farhood, A., et al Am. J. Physiol. 1991, 260, G355.
5. Yang, L.; Gong, J.; Wang, F.; Zhang, Y.; Wang, Y.; Hao, X.; Wu, X.; Bai, H.;
Stockigt, J.; Zhao, Y. J. Enzyme Inhib. Med. Chem. 2006, 21, 399.
6. Bandgar, B. P.; Gawande, S. S.; Bodade, R. G.; Gawande, N. M.; Khobragade, C. N.
Bioorg. Med. Chem. 2009, 17, 8168.
7. Fitzpatrick, L. R.; Wang, J.; Le, T. J. Pharmacol. Exp. Ther. 2001, 299, 915.
8. Fesen, M. R.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, K. W.
Biochem. Pharmacol. 1994, 48, 595.
5.6. Cytotoxicity assay
9. Lee, Y. J.; Liao, P. H.; Chen, W. K.; Yang, C. Y. Cancer Lett. 2000, 153, 51.
10. Nam, J. H.; Shin, D. H.; Zheng, H.; Kang, J. S.; Kim, W. K.; Kim, S. J. Eur. J.
Pharmacol. 2009, 612, 153.
11. Cagli, K.; Bagci, C.; Gulec, M.; Cengiz, B.; Akyol, O.; Sari, I.; Cavdar, S.; Pence, S.;
Dinckan, H. Ann. Clin. Lab. Sci. 2005, 35, 440.
12. Kart, A.; Cigremis, Y.; Ozen, H.; Dogan, O. Food Chem. Toxicol. 2009, 47, 1980.
13. Russo, A.; Longo, R.; Vanella, A. Fitoterapia 2002, 73, S21.
14. Wang, X.; Stavchansky, S.; Bowman, P. D.; Kerwin, S. M. Bioorg. Med. Chem.
2006, 14, 4879.
15. Wang, X.; Stavchansky, S.; Zhao, B.; Bynum, J. A.; Kerwin, S. M.; Bowman, P. D.
Eur. J. Pharmacol. 2008, 591, 28.
Stock CAPE and CAPE amide derivative solutions were dissolved
in DMSO then diluted in MCDB 131 tissue culture media for use in
the assays. Confluent HUVEC were treated with CAPE and the
amide derivatives for 24 h at 37 °C at concentrations ranging from
10 to 60 lM. Following the 24 h incubation, the media was re-
placed with 10% CellTiter-BlueÒ Blue solution (Promega, Madison
WI). HUVEC were incubated for 2 h at 37 °C then analyzed for fluo-
rescence. The readings were taken at 545 nm excitation and
590 nm emission wavelengths on a Spectramax M2 microplate
reader (Molecular Devices, Sunnyvale CA). Cell viability was calcu-
lated from these fluorescence readings.
16. Wang, X.; Stavchansky, S.; Zhao, B.; Bynum, J. A.; Bowman, P. D.; Kerwin, S. M.
Eur. J. Pharmacol. 2010, 635, 16.
17. Celli, N.; Dragani, L. K.; Murzilli, S.; Pagliani, T.; Poggi, A. J. Agric. Food Chem.
2007, 55, 3398.
18. Wang, X.; Bowman, P. D.; Kerwin, S. M.; Stavchansky, S. Biomed. Chromatogr.
2007, 21, 343.
5.7. Cytoprotection assay
19. Wang, X.; Pang, J.; Maffucci, J. A.; Pade, D. S.; Newman, R. A.; Kerwin, S. M.;
Bowman, P. D.; Stavchansky, S. Biopharm. Drug Dispos. 2009, 30, 221.
20. Rajan, P.; Vedernikova, I.; Cos, P.; Berghe, D. V.; Augustyns, K.; Haemers, A.
Bioorg. Med. Chem. Lett. 2001, 11, 215.
21. Naito, Y.; Sugiura, M.; Yamaura, Y.; Fukaya, C.; Yokoyama, K.; Nakagawa, Y.;
Ikeda, T.; Senda, M.; Fujita, T. Chem. Pharm. Bull. 1991, 39, 1736.
22. Son, S.; Lewis, B. J. Agric. Food Chem. 2002, 50, 468.
23. Nishioka, T.; Watanabe, J.; Kawabata, J.; Niki, R. Biosci. Biotech. Biochem. 1997,
61, 1138.
Confluent HUVEC were treated with CAPE and the amide deriva-
tives for 5 h at 37 °C. After the 5 h incubation, the compounds were
removed from the wells, and the cells were washed twice with
MCDB 131 buffer. Stock hydrogen peroxidesolution (50%, Sigma–Al-
drich) was diluted in MCDB 131 buffer, and incubated in the cells fol-
lowing the buffer wash. HUVEC were incubated in the hydrogen